Digital System

- Takes a set of discrete information (inputs) and discrete internal information (system state) and generates a set of discrete information (outputs).

System State

Discrete Inputs → Discrete Information Processing System → Discrete Outputs

Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
 - digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

A Digital Computer Example

Synchronous or Asynchronous?

Memory

CPU

Control unit

Datapath

Inputs:
Keyboard, mouse, modem, microphone

Output/Output

Outputs: CRT, LCD, modem, speakers

Measures of capacity and speed

Special Powers of \(10\) and \(2\):

- Kilo- (K) = 1 thousand = \(10^3\) and \(2^{10}\)
- Mega- (M) = 1 million = \(10^6\) and \(2^{20}\)
- Giga- (G) = 1 billion = \(10^9\) and \(2^{30}\)
- Terza- (T) = 1 trillion = \(10^{12}\) and \(2^{40}\)
- Peta- (P) = 1 quadrillion = \(10^{15}\) and \(2^{50}\)

Whether a metric refers to a power of ten or a power of two typically depends upon what is being measured.
Example

- Hertz = clock cycles per second (frequency)
 - 1MHz = 1,000,000Hz
 - Processor speeds are measured in MHz or GHz.
- Byte = a unit of storage
 - 1KB = \(2^{10} = 1024\) Bytes
 - 1MB = \(2^{20} = 1,048,576\) Bytes
 - Main memory (RAM) is measured in MB
 - Disk storage is measured in GB for small systems, TB for large systems.

Measures of time and space

- Milli- (m) = 1 thousandth = \(10^{-3}\)
- Micro- (µ) = 1 millionth = \(10^{-6}\)
- Nano- (n) = 1 billionth = \(10^{-9}\)
- Pico- (p) = 1 trillionth = \(10^{-12}\)
- Femto- (f) = 1 quadrillionth = \(10^{-15}\)

Data types

- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
 - Ultimately, we will have to develop schemes for representing all conceivable types of information - language, images, actions, etc.
 - We will start by examining different ways of representing integers, and look for a form that suits the computer.
 - Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage.
 - Thus they naturally provide us with two symbols to work with:
 - we can call them on and off, or 0 and 1.

What kinds of data do we need to represent?

Numbers
 - signed, unsigned, integers, floating point, complex, rational, irrational, …

Text
 - characters, strings, …

Images
 - pixels, colors, shapes, …

Sound
 - true, false

Logical

Instructions

Data type:
 - representation and operations within the computer

Number Systems – Representation

- Positive radix, positional number systems
- A number with radix \(r\) is represented by a string of digits:
 \(A_{n-1}A_{n-2} \ldots A_{1}A_{0} \cdot A_{-1} \ldots A_{-m} \cdot 1A_{-m}\)
in which \(0 \leq A_{i} < r\) and \(\cdot\) is the radix point.
- The string of digits represents the power series:
 \[
 (\text{Number})_r = \left(\sum_{i=n}^{1} A_{i} \cdot r^{i} \right) + \left(\sum_{i=-1}^{\text{max}} A_{i} \cdot r^{-i} \right)
 \]
 (Integer Portion) + (Fraction Portion)

Decimal Numbers

- “decimal” means that we have ten digits to use in our representation
 - the symbols 0 through 9
- What is 3546?
 - it is three thousands plus five hundreds plus four tens plus six ones.
 - i.e. 3546 = \(3 \times 10^{3} + 5 \times 10^{2} + 4 \times 10^{1} + 6 \times 10^{0}\)
- How about negative numbers?
 - we use two more symbols to distinguish positive and negative:
 - + and -
Decimal Numbers

- “decimal” means that we have ten digits to use in our representation (the symbols 0 through 9)
- What is 3546?
 - it is three thousands plus five hundreds plus four tens plus six ones.
 - i.e. 3546 = 3 \cdot 10^3 + 5 \cdot 10^2 + 4 \cdot 10^1 + 6 \cdot 10^0
- How about negative numbers?
 - we use two more symbols to distinguish positive and negative: + and -

Unsigned Binary Integers

Y = “abc” = a \cdot 2^2 + b \cdot 2^1 + c \cdot 2^0

(Where the digits a, b, c can each take on the values of 0 or 1 only)

N = number of bits

<table>
<thead>
<tr>
<th>3-bits</th>
<th>5-bits</th>
<th>8-bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>000000000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>00000001</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>00000100</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>00000011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>00000100</td>
</tr>
</tbody>
</table>

Problem:

- How do we represent negative numbers?

Two’s Complement

- Transformation
 - To transform a into -a, invert all bits in a and add 1 to the result

Range is: -2^{N-1} ≤ i ≤ 2^{N-1} - 1

Advantages:

- Operations need not check the sign
- Only one representation for zero
- Efficient use of all the bits

Limitations of integer representations

- Most numbers are not integer!
 - Even with integers, there are two other considerations:
 - Range:
 - The magnitude of the numbers we can represent is determined by how many bits we use:
 - e.g. with 32 bits the largest number we can represent is about ±2 billion, far too small for many purposes.
 - Precision:
 - The exactness with which we can specify a number:
 - e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal representation.
 - We need another data type!

Real numbers

- Our decimal system handles non-integer real numbers by adding yet another symbol – the decimal point (.) to make a fixed point notation:
 - e.g. 3456.78 = 3 \cdot 10^3 + 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0 + 7 \cdot 10^{-1} + 8 \cdot 10^{-2}
- The floating point, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
 - Volume of universe = 1 \times 10^{27} cm^3
 - Unit of electric charge e = 1.602 176 462 x 10^{-19} Coulomb

- The two components of these numbers are called the mantissa and the exponent

Real numbers in binary

- We mimic the decimal floating point notation to create a “hybrid” binary floating point number:
 - We first use a “binary point” to separate whole numbers from fractional numbers to make a fixed point notation:
 - e.g. 0001 1001.110 = 1.2^4 + 1.2^3 + 1.2^2 + 1.2^1 + 1.2^0 \approx 25.75
 - (2^4 = 16 and 2^3 = 8, etc.)
 - We then “float” the binary point:
 - 0001 1001.110 = 1.1001110 x 2^4
 - Mantissa = 1.100111, exponent = 4
 - Now we have to express this without the extra symbols (x, .)
 - by convention, we divide the available bits into three fields:
 - sign, mantissa, exponent
IEEE-754 fp numbers - 1

32 bits: 8 bits 23 bits

N = (-1)^s x 1.fraction x 2^(biased exp. – 127)

- Sign: 1 bit
- Mantissa: 23 bits
 - We “normalize” the mantissa by dropping the leading 1 and recording only its fractional part (why?)
- Exponent: 8 bits
 - In order to handle both +ve and -ve exponents, we add 127 to the actual exponent to create a “biased exponent”:
 - \(2^{-127} \Rightarrow \text{biased exponent} = 0000 0000 (= 0) \)
 - \(2^0 \Rightarrow \text{biased exponent} = 0111 1111 (= 127) \)
 - \(2^{+127} \Rightarrow \text{biased exponent} = 1111 1110 (= 254) \)

IEEE-754 fp numbers - 2

- Example: Find the corresponding fp representation of 25.75
 - 25.75 \Rightarrow 00011001.110 \Rightarrow 1.1001110 x 2^4
 - sign bit = 0 (+ve)
 - normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000
 - biased exponent = 4 + 127 = 131 => 1000 0011
 - so 25.75 = 01000 0011 100 1110 0000 0000 0000 0000 \Rightarrow \text{x4CE0000}

- Values represented by convention:
 - Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0
 - NaN (not a number): exponent = 255 and fraction \neq 0
 - Zero (0): exponent = 0 and fraction = 0
 - note: exponent = 0 => fraction is de-normalized, i.e no hidden 1

IEEE-754 fp numbers - 3

- Double precision (64 bit) floating point

64 bits: 11 bits 52 bits

N = (-1)^s x 1.fraction x 2^(biased exp. – 1023)

- Range & Precision:
 - 32 bit:
 - mantissa of 23 bits + 1 => approx. 7 digits decimal
 - \(2^{-1023} \Rightarrow \text{approx.} 10^{-38} \)
 - 64 bit:
 - mantissa of 52 bits + 1 => approx. 15 digits decimal
 - \(2^{-1023} \Rightarrow \text{approx.} 10^{-306} \)

Binary Numbers and Binary Coding

- Flexibility of representation
 - Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.

- Information Types
 - Numeric
 - Must represent range of data needed
 - Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
 - Tight relation to binary numbers
 - Non-numeric
 - Greater flexibility since arithmetic operations not applied.
 - Not tied to binary numbers

Non-numeric Binary Codes

- Given \(n \) binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the \(2^n \) binary numbers.

<table>
<thead>
<tr>
<th>Color</th>
<th>Binary Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>000</td>
</tr>
<tr>
<td>Orange</td>
<td>001</td>
</tr>
<tr>
<td>Yellow</td>
<td>010</td>
</tr>
<tr>
<td>Green</td>
<td>011</td>
</tr>
<tr>
<td>Blue</td>
<td>100</td>
</tr>
<tr>
<td>Indigo</td>
<td>101</td>
</tr>
<tr>
<td>Violet</td>
<td>110</td>
</tr>
<tr>
<td>Code 100 is not used</td>
<td></td>
</tr>
</tbody>
</table>

Number of Bits Required

- Given \(M \) elements to be represented by a binary code, the minimum number of bits, \(n \), needed, satisfies the following relationships:
 - \(2^n > M > 2^{(n - 1)} \)
 - \(n = \lceil \log_2 M \rceil \) where \(\lceil x \rceil \), called the ceiling function, is the integer greater than or equal to \(x \).
- Example: How many bits are required to represent decimal digits with a binary code?
 - 4 bits are required (\(n = \lceil \log_2 9 \rceil = 4 \))
<table>
<thead>
<tr>
<th>Number of Elements Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given n digits in radix r, there are r^n distinct elements that can be represented.</td>
</tr>
<tr>
<td>But, you can represent m elements, $m < r^n$</td>
</tr>
<tr>
<td>Examples:</td>
</tr>
<tr>
<td>- You can represent 4 elements in radix $r = 2$ with $n = 2$ digits: (00, 01, 10, 11).</td>
</tr>
<tr>
<td>- You can represent 4 elements in radix $r = 2$ with $n = 4$ digits: (0001, 0010, 0100, 1000).</td>
</tr>
</tbody>
</table>