Introduction to Bioinformatics

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Information Systems:

Fundamentals

Digital System

- Takes a set of discrete information (inputs) and discrete internal information (system state) and generates a set of discrete information (outputs).

Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
 - digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

A Digital Computer Example

- Synchronous or Asynchronous?
- Inputs: Keyboard, mouse, modem, microphone
- Outputs: CRT, LCD, modem, speakers

Measures of capacity and speed

Special Powers of \(10\) and \(2\):

- Kilo- (K) = 1 thousand = \(10^3\) and \(2^{10}\)
- Mega- (M) = 1 million = \(10^6\) and \(2^{20}\)
- Giga- (G) = 1 billion = \(10^9\) and \(2^{30}\)
- Tera- (T) = 1 trillion = \(10^{12}\) and \(2^{40}\)
- Peta- (P) = 1 quadrillion = \(10^{15}\) and \(2^{50}\)

Whether a metric refers to a power of ten or a power of two typically depends upon what is being measured.
Example

- Hertz = clock cycles per second (frequency)
 - 1MHz = 1,000,000Hz
- Processor speeds are measured in MHz or GHz.

- Byte = a unit of storage
 - 1KB = 2^10 = 1024 Bytes
 - 1MB = 2^20 = 1,048,576 Bytes
- Main memory (RAM) is measured in MB
- Disk storage is measured in GB for small systems, TB for large systems.

Measures of time and space

- Milli- (m) = 1 thousandth = 10^-3
- Micro- (μ) = 1 millionth = 10^-6
- Nano- (n) = 1 billionth = 10^-9
- Pico- (p) = 1 trillionth = 10^-12
- Femto- (f) = 1 quadrillionth = 10^-15

Data types

- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
- Ultimately, we need to develop schemes for representing all conceivable types of information - language, images, actions, etc.
- Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage.
- Thus they naturally provide us with two symbols to work with:
 - we can call them on and off, or 0 and 1.

What kinds of data do we need to represent?

Numbers
 - signed, unsigned, integers, floating point, complex, rational, irrational, …

Text
 - characters, strings, …

Images
 - pixels, colors, shapes, …

Sound

Logical
 - true, false

Instructions
 - …

Data type:
 - representation and operations within the computer

Number Systems – Representation

- Positive radix, positional number systems

A number with radix r is represented by a string of digits:

\[A_n A_{n-1} A_{n-2} \ldots A_1 A_0 \]

\[A_{m+1} A_m \ldots A_2 A_1 A_0 \]

in which \(0 \leq A_i < r \) and \(\ast \) is the radix point.

- The string of digits represents the power series:

\[(\text{Number})_r = \left(\sum_{i=0}^{n-1} A_i r^i \right) + \left(\sum_{j=0}^{m-1} A_j r^j \right) \]

\(\text{Integer Portion} + \text{Fraction Portion} \)

Decimal Numbers

- “decimal” means that we have ten digits to use in our representation
 - the symbols 0 through 9
- What is 3546?
 - it is three thousands plus five hundreds plus four tens plus six ones.
 - i.e. 3546 = 3×10^3 + 5×10^2 + 4×10^1 + 6×10^0
- How about negative numbers?
 - we use two more symbols to distinguish positive and negative:
 - + and -
Decimal Numbers

- “decimal” means that we have ten digits to use in our representation (the symbols 0 through 9)

- What is 3546?
 - it is three thousands plus five hundreds plus four tens plus six ones.
 - i.e. $3546 = 3 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 6 \times 10^0$

- How about negative numbers?
 - we use two more symbols to distinguish positive and negative: + and -

Unsigned Binary Integers

<table>
<thead>
<tr>
<th>N = number of bits</th>
<th>3-bits</th>
<th>5-bits</th>
<th>8-bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ≤ i < $2^N - 1$</td>
<td>0 000</td>
<td>0 0000</td>
<td>0 000000</td>
</tr>
<tr>
<td></td>
<td>1 001</td>
<td>0 0001</td>
<td>0 000001</td>
</tr>
<tr>
<td></td>
<td>2 010</td>
<td>0 0010</td>
<td>0 000010</td>
</tr>
<tr>
<td></td>
<td>3 011</td>
<td>0 0011</td>
<td>0 000011</td>
</tr>
<tr>
<td></td>
<td>4 100</td>
<td>0 0100</td>
<td>0 000100</td>
</tr>
</tbody>
</table>

Problem:
- How do we represent negative numbers?

Signed Binary Integers

(Two’s Complement representation)

- Transformation
 - To transform a into $-a$, invert all bits in a and add 1 to the result

<table>
<thead>
<tr>
<th>Range: $-2^{N-1} < i < 2^{N-1} - 1$</th>
</tr>
</thead>
</table>
| -16 10000 | ...
| -3 1101 | ...
| -2 1110 | ...
| -1 1111 | ...
| 0 0000 | ...
| +1 0001 | ...
| +2 0010 | ...
| +3 0011 | ...
| +15 0111 | ...

Advantages:
- Operations need not check the sign
- Only one representation for zero
- Efficient use of all the bits

Limitations of integer representations

- Most numbers are not integer!
 - Even with integers, there are two other considerations:
 - Range:
 - The magnitude of the numbers we can represent is determined by how many bits we use:
 - e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far too small for many purposes.
 - Precision:
 - The exactness with which we can specify a number:
 - e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal representation.
 - We need another data type!

Real numbers

- Our decimal system handles non-integer real numbers by adding yet another symbol - the decimal point (.) to make a fixed point notation:
 - e.g. $3456.78 = 3.10^3 + 4.10^2 + 5.10^1 + 6.10^0 + 7.10^{-1} + 8.10^{-2}$

- The floating point, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
 - Unit of electric charge $e = 1.602 176 462 \times 10^{-19}$ Coulomb
 - Volume of universe $V = 1 \times 10^{83}$ cm3
 - the two components of these numbers are called the mantissa and the exponent

Real numbers in binary

- We mimic the decimal floating point notation to create a “hybrid” binary floating point number:
 - We first use a “binary point” to separate whole numbers from fractional numbers to make a fixed point notation:
 - e.g. $0.0011011101011001 = 2 \times 10^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6}$

 - We then “float” the binary point:
 - $0.0011011101011001 \times 2^4$
 - mantissa = 1.101110, exponent = 4

 - Now we have to express this without the extra symbols (x, 2, .)
 - by convention, we divide the available bits into three fields:
 - sign, mantissa, exponent
IEEE-754 fp numbers - 1

32 bits: 1 6 bits 23 bits
N = (-1)^b \times 1.fraction \times 2^{(biased exp. – 127)}
• Sign: 1 bit
• Mantissa: 23 bits
 – We “normalize” the mantissa by dropping the leading 1 and recording only its fractional part (why?)
• Exponent: 8 bits
 – In order to handle both +ve and -ve exponents, we add 127 to the actual exponent to create a “biased exponent”:
 ... Continue...

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75
 - 25.75 => 00011001.110 => 1.1001110 x 2^4
 - sign bit = 0 (+ve)
 - normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000
 - biased exponent = 4 + 127 = 131 => 1000 0011
 - so 25.75 => 01000000110100111000000000000000

• Values represented by convention:
 - Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0
 - NaN (not a number): exponent = 255 and fraction ≠ 0
 - Zero (0): exponent = 0 and fraction = 0
 • note: exponent = 0 => fraction is de-normalized, i.e no hidden 1

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point
 64 bits: 1 11 bits 52 bits
N = (-1)^b \times 1.fraction \times 2^{(biased exp. – 1023)}
• Range & Precision:
 • 32 bit:
 - mantissa of 23 bits + 1 => approx. 7 digits decimal
 - 2^{-127} => biased exponent = 0000 0000 (= 0)
 - 2^{+127} => biased exponent = 1111 1111 (= 127)
 • 64 bit:
 - mantissa of 52 bits + 1 => approx. 15 digits decimal
 - 2^{-1023} => approx. 10^{-306}

Binary Numbers and Binary Coding

• Flexibility of representation
 – Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.
• Information Types
 – Numeric
 • Must represent range of data needed
 • Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
 • Tight relation to binary numbers
 – Non-numeric
 • Greater flexibility since arithmetic operations not applied.
 • Not tied to binary numbers

Non-numeric Binary Codes

• Given \(n \) binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the \(2^n \) binary numbers.
• Example: A binary code for the seven colors of the rainbow
<table>
<thead>
<tr>
<th>Color</th>
<th>Binary Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>000</td>
</tr>
<tr>
<td>Orange</td>
<td>001</td>
</tr>
<tr>
<td>Yellow</td>
<td>010</td>
</tr>
<tr>
<td>Green</td>
<td>011</td>
</tr>
<tr>
<td>Blue</td>
<td>101</td>
</tr>
<tr>
<td>Indigo</td>
<td>110</td>
</tr>
<tr>
<td>Violet</td>
<td>111</td>
</tr>
</tbody>
</table>
• Code 100 is not used

Number of Bits Required

• Given \(M \) elements to be represented by a binary code, the minimum number of bits, \(n \), needed, satisfies the following relationships:
 \[2^n > M > 2^{(n-1)} \]
 \[n = \lceil \log_2 M \rceil \text{ where } \lceil x \rceil \text{ is the ceiling function, is the integer greater than or equal to } x. \]
• Example: How many bits are required to represent decimal digits with a binary code?
 – 4 bits are required \((n = \lceil \log_2 9 \rceil = 4) \)
Number of Elements Represented

• Given n digits in radix r, there are r^n distinct elements that can be represented.
• But, you can represent m elements, $m < r^n$
• Examples:
 – You can represent 4 elements in radix $r = 2$ with $n = 2$ digits: (00, 01, 10, 11).
 – You can represent 4 elements in radix $r = 2$ with $n = 4$ digits: (0001, 0010, 0100, 1000).