Lecture 7

Fourier Series & Spectrum

License Info for SPFirst Slides

• This work released under a Creative Commons License with the following terms:

 • Attribution
 • The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
 • Non-Commercial
 • The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor’s permission.
 • Share Alike
 • The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor’s work.
 • Full Text of the License
 • This (hidden) page should be kept with the presentation

READING ASSIGNMENTS

• This Lecture:
 – Fourier Series in Ch 3, Sects 3-4, 3-5 & 3-6
 • Replaces pp. 62-66 in Ch 3 in DSP First
 • Notation: \(a_k \) for Fourier Series

• Other Reading:
 – Next Lecture: Sampling

LECTURE OBJECTIVES

• ANALYSIS via Fourier Series
 – For PERIODIC signals: \(x(t+T_0) = x(t) \)
 \[a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi k / T_0)t} \, dt \]

• SPECTRUM from Fourier Series
 – \(a_k \) is Complex Amplitude for \(k \)-th Harmonic

SPECTRUM DIAGRAM

• Recall Complex Amplitude vs. Freq
 \[x(t) = a_0 + \sum_{k=1}^{10} \left(a_k e^{j2\pi f_k t} + a_k^* e^{-j2\pi f_k t} \right) \]
Harmonic Signal

\[x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi f_k t} \]

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

\[2\pi f_0 = \omega_0 = \frac{2\pi}{T_0} \quad \text{or} \quad T_0 = \frac{1}{f_0} \]

Example

\[x(t) = \sin^3(3\pi t) \]

\[x(t) = \left(\frac{1}{8} e^{j\pi/6} + \frac{-3j}{8} e^{j\pi/2} + \frac{3j}{8} e^{j\pi} + \frac{-j}{8} e^{-j\pi/2} \right) e^{-j\pi t} \]

Example

\[x(t) = \sin^3(3\pi t) \]

\[x(t) = \left(\frac{1}{8} e^{j\pi/6} + \frac{-3j}{8} e^{j\pi/2} + \frac{3j}{8} e^{j\pi} + \frac{-j}{8} e^{-j\pi/2} \right) e^{-j\pi t} \]

In this case, analysis just requires picking off the coefficients.

\[a_k = \begin{cases} \frac{1}{2} & k = -3 \\ \frac{1}{2} & k = -1 \\ \frac{1}{2} & k = 1 \\ \frac{1}{2} & k = 3 \end{cases} \]

Frequency in Hz

FS: Rectified Sine Wave \(\{a_k\} \)

\[a_k = \frac{1}{T_0} \int_{0}^{T_0} x(t) e^{-j\omega_0 k t} dt \quad (k \neq \pm 1) \]

Half-Wave Rectified Sine

FS: Rectified Sine Wave \(\{a_k\} \)

\[a_k = \begin{cases} \frac{1}{2} e^{j(2\pi/3)k} & k \neq \pm 1, \pm 2, \pm 3, \pm 4 \\ \frac{1}{2} \int_{0}^{T_0/2} e^{j(2\pi/3)k} e^{j2\pi f_k t} dt & k = \pm 1, \pm 2, \pm 3, \pm 4 \end{cases} \]

For \(k \) odd:

\[a_k = \frac{1}{2} \int_{0}^{T_0/2} \left(e^{j(2\pi/3)k} - 1 \right) e^{-j\pi k} e^{-j(2\pi/3)(k/2)} \frac{1}{2} \frac{k}{k+1} \left(k \frac{-1}{k+1} \right) - 1 \]

For \(k \) even:

\[a_k = \frac{1}{2} \int_{0}^{T_0/2} \left(e^{j(2\pi/3)k} - 1 \right) e^{-j\pi k} e^{-j(2\pi/3)(k/2)} \frac{1}{2} \frac{k}{k+1} \left(k \frac{-1}{k+1} \right) - 1 \]

For \(k = \pm 1, \pm 3 \):

\[a_k = \frac{1}{2} \int_{0}^{T_0/2} \left(e^{j(2\pi/3)k} - 1 \right) e^{-j\pi k} e^{-j(2\pi/3)(k/2)} \frac{1}{2} \frac{k}{k+1} \left(k \frac{-1}{k+1} \right) - 1 \]
SQUARE WAVE EXAMPLE

\[
x(t) = \begin{cases} 1 & 0 \leq t < \frac{T_0}{2} \\ 0 & \frac{T_0}{2} \leq t < T_0 \end{cases}
\]

for \(T_0 = 0.04 \) sec.

\[x(t) \]

FS for a SQUARE WAVE \{a_k\}

\[
a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi/T_0)kt} dt \quad (k \neq 0)
\]

\[
a_k = \frac{1}{T_0} \int_0^{T_0} e^{-j(2\pi/0.04)kt} dt = \frac{1}{j2\pi k} \left(e^{-j(2\pi/0.04)kT_0} - 1 \right) = \frac{1}{j2\pi k} \left(-1 + e^{-j(2\pi/0.04)kT_0} \right)
\]

DC Coefficient: \(a_0\)

\[
a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi/T_0)kt} dt \quad (k = 0)
\]

\[
a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} \text{(Area)}
\]

\[
a_0 = \frac{1}{0.04} \int_0^{0.02} dt = \frac{1}{0.04} (0.02 - 0) = \frac{1}{2}
\]

Fourier Coefficients \(a_k\)

- \(a_k\) is a function of \(k\)
 - Complex Amplitude for \(k\)-th Harmonic
 - This one doesn’t depend on the period, \(T_0\)

\[
a_k = 1 - \left(\frac{1}{j2\pi k} \right) = \begin{cases} \frac{1}{j\pi k} & k = \pm1, \pm3, \ldots \\ 0 & k = \pm2, \pm4, \ldots \\ \frac{1}{2} & k = 0 \end{cases}
\]

Spectrum from Fourier Series

\[
a_k = 2\pi f_0(0.04) = 2\pi(25)
\]

Fourier Series Synthesis

- HOW do you APPROXIMATE \(x(t)\)?

\[
a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi/T_0)kt} dt
\]

- Use FINITE number of coefficients

\[
x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi k f_0 t}
\]

\[a_k = a_k^* \quad \text{when } x(t) \text{ is real} \]
Fourier Series Synthesis

Fourier Series Synthesis: 1st & 3rd Harmonics

$$y(t) = \frac{1}{2} + \frac{2}{\pi} \cos(2\pi(25)t - \frac{\pi}{2}) + \frac{2}{3\pi} \cos(2\pi(75)t - \frac{\pi}{2})$$

Fourier Synthesis

$$s_N(t) = \frac{1}{2} + \frac{2}{\pi} \sin(\omega_0 t) + \frac{2}{3\pi} \sin(3\omega_0 t) + \ldots$$

Gibbs’ Phenomenon

- Convergence at DISCONTINUITY of $$x(t)$$
 - There is always an overshoot
 - 9% for the Square Wave case

Fourier Series Demos

- Fourier Series Java Applet
 - Greg Slabaugh
 - Interactive
 - http://users.ece.gatech.edu/mcclella/2025/Fourier_Slabaugh/fourier.html

- MATLAB GUI: fseriesdemo
 - http://users.ece.gatech.edu/mcclella/matlabGUIs/index.html
fseriesdemo GUI

Fourier Series Java Applet

Harmonic Signal (3 Freqs)