Soru 1) Bir maddesel nokta bir doğru üzerinde $a = -0,2V^2$ ivme –hız bağlantısı ile hareket ediyor. $t = 0$ da konum $s = 0$ ve hız $V = 20\,m/s$ olduğuna göre $t = 2$ deki konumu hızı ve ivmeyi hesaplayınız.

Çözüm:

$$\frac{dV}{dt} = -0.2V^2 \Rightarrow \int_0^t dt = -5\int_{20}^V \frac{dV}{V^2} \Rightarrow t = 5\left(\frac{1}{V}\right)_{20} = 5\left(\frac{1}{V} - \frac{1}{20}\right)$$

$$t = \frac{5}{V} - \frac{5}{20} \Rightarrow \frac{5}{V} = t + \frac{1}{4} \Rightarrow \frac{V}{5} = \frac{1}{t + \frac{1}{4}} \Rightarrow V = \frac{5}{t + \frac{1}{4}}$$

$$\frac{ds}{dt} = V \Rightarrow \frac{ds}{dt} = \frac{5}{t + \frac{1}{4}} \Rightarrow \int_0^s ds = \int_0^{t + \frac{1}{4}} dt \Rightarrow s = 5\ln(t + \frac{1}{4})$$

$$s = 5[\ln(t + \frac{1}{4}) - \ln(1/4)] \Rightarrow s = 5\ln(4t + 1), \quad V = \frac{20}{4t + 1}$$

$t = 2$ de $s = 5\ln 9, \quad s = 10,99\,m, \quad V = \frac{20}{9}, \quad V = 2,22\,m, \quad a = -0,2(2,22)^2$

$a = -0,99\,m/s^2$
Soru 2) Şekilde gösterildiği gibi \(P_1 \) maddesel noktası \(d_1 \) doğrusu üzerinde

\[
 s = 10 + 8 \sin \frac{\pi}{12} \ t \quad \text{konum-zaman bağlantısına göre} \quad P_2 \quad \text{maddesel noktası ise} \quad \text{xy düzleminde}
\]

bulunan \(R = 12 \text{cm} \). yarıçaplı bir çember üzerinde \(\theta = \frac{\pi}{27} \ t^2 \) açı-zaman bağlantısına göre hareket etmektedir. \(t = 3 \) için \(P_2 \) maddesel noktasının \(P_1 \) maddesel noktasına göre bağlı yer, hız, ivme vektörlerini ve aralarındaki uzaklığı bulunuz.

![Diagram](https://via.placeholder.com/150)

Çözüm:

\[
 \vec{r}_{P_2/P_1} = \vec{r}_{P_2} - \vec{r}_{P_1} , \quad \vec{r}_{P_2} = \overrightarrow{OC} + \overrightarrow{CP_2} , \quad \overrightarrow{OC} = 20 \hat{i} + 16 \hat{j} , \quad \overrightarrow{CP_2} = R \cos \theta \hat{i} + R \sin \theta \hat{j}
\]

\[
 \vec{r}_{P_2} = (20 + 12 \cos \theta) \hat{i} + (16 + 12 \sin \theta) \hat{j} \quad \vec{r}_{P_1} = \overrightarrow{OA} + s \vec{U}_{AB} \quad \vec{U}_{AB} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}
\]

\[
 \vec{U}_{AB} = \frac{-20 \hat{i} + 10 \hat{k}}{\sqrt{20^2 + 10^2}} , \quad \vec{U}_{AB} = \frac{-2 \hat{i} + \frac{1}{\sqrt{5}} \hat{k}}{\sqrt{5}} , \quad \vec{r}_{P_1} = (20 - \frac{2}{\sqrt{5}} s) \hat{i} + \frac{1}{\sqrt{5}} s \hat{k}
\]

\[
 \vec{r}_{P_2/P_1} = (12 \cos \theta + \frac{2}{\sqrt{5}} s) \hat{i} + (16 + 12 \sin \theta) \hat{j} - \frac{1}{\sqrt{5}} s \hat{k} , \quad t = 3 \text{de} \quad \theta = \frac{\pi}{3} \quad , \quad s = 10 + 4\sqrt{2}
\]

\[
 \vec{r}_{P_2/P_1} = (6 + \frac{2}{\sqrt{5}} (10 + 4\sqrt{2}) \hat{i} + (16 + 6\sqrt{3}) \hat{j} - \frac{1}{\sqrt{5}} (10 + 4\sqrt{2}) \hat{k} \quad \vec{r}_{P_2/P_1} = 20 \hat{i} + 26,4 \hat{j} - 7 \hat{k}
\]

\[
 \vec{V}_{P_2/P_1} = (-12 \hat{\theta} \sin \theta + \frac{2}{\sqrt{5}} \hat{V}) \hat{i} + 12 \hat{\theta} \cos \theta \hat{j} - \frac{1}{\sqrt{5}} \hat{V} \hat{k} , \quad \hat{\theta} = \frac{2\pi}{27} \ t , \quad \hat{V} = \frac{2\pi}{3} \cos \frac{\pi}{12} \ t
\]

\[
 t = 3 \text{de} \quad \hat{\theta} = \frac{2\pi}{9} \quad , \quad \hat{V} = \frac{\pi}{3} \sqrt{2} \quad , \quad \vec{V}_{P_2/P_1} = (-12 \frac{2\pi}{9} \hat{i} + \frac{2}{\sqrt{5}} \hat{V} \hat{j} + 12 \frac{2\pi}{9} \hat{k} - \frac{1}{\sqrt{5}} \hat{V} \hat{k}
\]

\[
 \vec{V}_{P_2/P_1} = -5,93 \hat{i} + 4,19 \hat{j} - 0,66 \hat{k}
\]

\[
 \vec{a}_{P_2/P_1} = (-12 \hat{\theta} \sin \theta - 12 \hat{\theta}^2 \cos \theta + \frac{2}{\sqrt{5}} a) \hat{i} + (12 \hat{\theta} \cos \theta - 12 \hat{\theta}^2 \sin \theta) \hat{j} - \frac{1}{\sqrt{5}} a \hat{k}
\]

\[
 \hat{\theta} = \frac{2\pi}{27} \quad , \quad a = \frac{\pi^2}{18} \sin \frac{\pi}{12} \ t \quad , \quad t = 3 \text{de} \quad \hat{\theta} = \frac{2\pi}{27} \quad , \quad a = \frac{\pi^2}{36} \sqrt{2}
\]

\[
 \vec{a}_{P_2/P_1} = (-12 \frac{2\pi}{27} \sqrt{3} \hat{i} - 12 \frac{4\pi^2}{81} \hat{i} + \frac{2}{\sqrt{5} 36} \hat{V} \hat{j} + (12 \frac{2\pi}{27} \hat{i} - 12 \frac{4\pi^2}{81} \hat{V} \hat{j} - \frac{1}{\sqrt{5} 36} \hat{V} \hat{k}
\]

\[
 \vec{a}_{P_2/P_1} = -5,7 \hat{i} - 3,7 \hat{j} + 0,17 \hat{k} \quad , \quad \vec{P}_1 P_2 = |P_{P_2/P_1}| = \sqrt{20^2 + 26,4^2 + 7^2} \quad , \quad \vec{P}_1 P_2 = 33,85 \text{ cm}
SORU 3) Şekildeki mekanizmada dairesel levhanın merkezin hızı sola doğru \(V_C = 2 \text{ cm/s} \) (sabit) olduğuna göre AB çubuğunun verilen konum için

a) açısal hızını b) açısal ivmesini bulunuz

\[R = 10 \text{ cm}. \]
\[\overline{AB} = 24 \text{ cm}. \]
\[\overline{BC} = 46 \text{ cm}. \]

\[\theta = 60^0 \] için

a) \(\omega_{AB} = ? \)
b) \(\alpha_{AB} = ? \)

Çözüm:

\[\omega_{BC} = \omega_{BC} \]

\[\overline{IC} = \overline{IE} - R, \quad \overline{IE} = \overline{AE} \tan \theta, \quad \overline{AE} = \overline{BC} \cos \varphi + \overline{AB} \cos \theta, \quad \cos \varphi = \frac{\overline{CD}}{\overline{BC}} \]

\[\overline{CD} = \sqrt{\overline{BC}^2 - \overline{BD}^2}, \quad \overline{BD} = \overline{AB} \sin \theta - R, \quad \overline{BD} = 10,785 \text{ cm}, \quad \overline{CD} = 44,718 \text{ cm}, \]
\[\overline{AE} = 56,718 \text{ cm}, \quad \overline{IE} = 98,238 \text{ cm}, \quad \overline{IC} = 88,238 \text{ cm}, \quad \overline{IA} = \frac{\overline{AE}}{\cos \theta}, \quad \overline{IA} = 113,436 \text{ cm} \]
\[\overline{IB} = 89,436 \text{ cm}, \quad \varphi = 13,659^0, \quad \omega_{BC} = \frac{\overline{V}_C}{\overline{IC}}, \quad \omega_{BC} = \frac{2}{88,238}, \quad \omega_{BC} = 0,0227 \text{ rad/s} \]
\[\overline{V}_B = \overline{IB} \omega_{BC}, \quad \overline{V}_B = 2,027 \text{ cm/s}, \quad \omega_{AB} = 0,0845 \text{ rad/s} \]

b) \(\vec{a}_B = \vec{a}_C + \vec{a}_{B/C}, \quad \vec{a}_C = \vec{0} \) (C nin hareketi doğrusal hızının şiddeti sabit old.)
\[\vec{a}_B = \alpha_{AB} \vec{k} \land \overline{AB} + \vec{a}_{AB} \land \vec{V}_B, \quad \vec{a}_{B/C} = \vec{a}_{BC} \land \overline{BC} + \vec{a}_{BC} \land \vec{V}_{B/C} \]
\[\vec{V}_B = \overline{V}_B \sin \theta \hat{i} - \overline{V}_B \cos \theta \hat{j}, \quad \vec{V}_B = 1,76 \hat{i} - 1,01 \hat{j}, \quad \vec{V}_C = 2 \hat{i}, \quad \vec{V}_{B/C} = \vec{V}_B - \vec{V}_C \]
\[\vec{V}_{B/C} = -0,24 \hat{i} - 1,01 \hat{j}, \quad \overline{AB} = \overline{AB} \cos \theta \hat{i} + \overline{AB} \sin \theta \hat{j}, \quad \overline{AB} = 12 \hat{i} + 12 \sqrt{3} \hat{j} \]
\[\overline{CB} = \overline{BC} \cos \varphi \hat{i} + \overline{BC} \sin \varphi \hat{j}, \quad \overline{CB} = 46 \cos 13,659^0 \hat{i} + 46 \sin 13,659^0 \hat{j} \]
\[\overline{CB} = 44,7 \hat{i} + 10,86 \hat{j} \]
$$\ddot{a}_b = \alpha_{AB} \vec{k} \wedge (12 \vec{i} + 12\sqrt{3} \vec{j}) - 0,0845 \vec{k} \wedge (1,76 \vec{i} - 1,01 \vec{j})$$

$$\ddot{a}_b = (-12\sqrt{3} \alpha_{AB} - 0,085) \vec{i} + (12 \alpha_{AB} - 0,149) \vec{j}$$

$$\ddot{a}_{B/C} = \alpha_{BC} \vec{k} \wedge (44,7 \vec{i} + 10,86 \vec{j}) + 0,0227 \vec{k} \wedge (-0,24 \vec{i} - 1,01 \vec{j})$$

$$\ddot{a}_{B/C} = (-10,86 \alpha_{BC} + 0,023) \vec{i} + (44,7 \alpha_{BC} - 0,00545) \vec{j}$$

$$\ddot{a}_b = (-12\sqrt{3} \alpha_{AB} - 0,085) \vec{i} + (12 \alpha_{AB} - 0,149) \vec{j} = (-10,86 \alpha_{BC} + 0,023) \vec{i} + (44,7 \alpha_{BC} - 0,00545) \vec{j}$$

$$\begin{align*}
-12\sqrt{3} \alpha_{AB} - 0,085 &= -10,86 \alpha_{BC} + 0,023 \\
+ \sqrt{3} (12 \alpha_{AB} - 0,149) &= \sqrt{3} (44,7 \alpha_{BC} - 0,00545)
\end{align*}$$

$$66,56 \alpha_{BC} = -0,3566 \quad \Rightarrow \quad \alpha_{BC} = -0,00544 \text{ rad/s}^2$$
Soru 1) Bir maddesel nokta bir doğru üzerinde \(a = 12s^{3/2} \) ivme-konum bağıntısı ile hareket ediyor. \(t = 0 \) da konum \(s = 0 \) ve hız \(V = 0 \) olduğuna göre \(t = 2 \) deki konumu hızı ve ivmeyi hesaplayınız.

Çözüm:

\[
\begin{align*}
a &= \frac{VdV}{ds}, \quad \int_0^V VdV = 120 \int_0^S s^{1/2} ds \\
&\Rightarrow \frac{1}{2}V^2 = 12 \frac{2}{3}S^{3/2} \\
v^2 &= 16s^{3/2}, \quad V = 4s^{3/4}, \quad V = \frac{ds}{dt} \Rightarrow dt = \frac{ds}{V} \\
\int_0^t dt &= \frac{1}{4} \int_0^S s^{-3/4} ds \\
&\Rightarrow t = \frac{1}{4} (4) s^{1/4} \Rightarrow s = t^4, \quad V = 4t^3, \quad a = 12t^2 \\
t &= 2 \text{ de } s = 2^4, \quad s = 16m, \quad V = 4 \times 2^3, \quad V = 32m/s, \quad a = 12 \times 2^2, \quad a = 48m/s^2
\end{align*}
\]
SORU 2) Şekilde gösterildiği gibi \(P_1 \) maddesel noktası \(d_1 \) doğrusu üzerinde \(s = 14 + 12\sin\frac{\pi}{12}t \) konum-zaman bağıntısına göre \(P_2 \) maddesel noktası ise \(xy \) düzleminde bulunan \(R = 16\text{cm.} \) yarıçaplı bir çember üzerinde \(\theta = \frac{\pi}{27}t^2 \) açı-zaman bağıntısına göre hareket etmektedir. \(t = 3 \) için \(P_2 \) maddesel noktasının \(P_1 \) maddesel noktasına göre bağıl yer, hız, ivme vektörlerini ve aralarındaki uzaklığı bulunuz.

\[
\begin{align*}
\vec{\ddot{r}}_{P_2/P_1} &= \vec{\ddot{r}}_{P_2} - \vec{\ddot{r}}_{P_1}, \quad \vec{\dot{r}}_{P_2} = (24 + 16\cos 0)\vec{i} + (20 + 16\sin 0)\vec{j}, \quad \vec{\ddot{r}}_{P_1} = \overrightarrow{OA} + s \vec{U}_{AB} \\
\vec{U}_{AB} &= \frac{-24\vec{i} + 15\vec{k}}{\sqrt{24^2 + 15^2}}, \quad \vec{\dot{r}}_{P_1} = (24 - 0,848s)\vec{i} + 0,53s\vec{k} \\
\vec{\ddot{r}}_{P_2/P_1} &= (16\cos 0 + 0,848s)\vec{i} + (20 + 16\sin 0)\vec{j} - 0,53s\vec{k} \\
t &= 3 \text{ de } \dot{\theta} = \frac{\pi}{3}, \quad s = 14 + 6\sqrt{2} \\
\vec{\ddot{r}}_{P_2/P_1} &= [24 + 16\cos\frac{\pi}{3} + 0,848(14 + 6\sqrt{2})]\vec{i} + (20 + 16\sin\frac{\pi}{3})\vec{j} - 0,53(14 + 6\sqrt{2})\vec{k} \\
\vec{\ddot{r}}_{P_2/P_1} &= 51,07\vec{i} + 33,86\vec{j} - 11,92\vec{k} \\
\vec{\ddot{V}}_{P_2/P_1} &= (-16\dot{\theta}\sin 0 + 0,848 V)\vec{i} + 16\dot{\theta}\cos 0\vec{j} - 0,53 V\vec{k}, \quad \dot{\theta} = \frac{2\pi}{27}t, \quad V = \pi\cos\frac{\pi}{12}t \\
t &= 3 \text{ de } \dot{\theta} = \frac{2\pi}{9} \text{ rad/s}, \quad V = \pi\cos\frac{\pi}{6} \\
\vec{\ddot{V}}_{P_2/P_1} &= (-16\frac{2\pi}{9}\sin\frac{\pi}{3} + 0,848\pi\cos\frac{\pi}{6})\vec{i} + 16\frac{2\pi}{9}\cos\frac{\pi}{3}\vec{j} - 0,53\pi\cos\frac{\pi}{6}\vec{k} \\
\vec{\ddot{V}}_{P_2/P_1} &= -7,366\vec{i} + 5,585\vec{j} - 1,442\vec{k} \\
\vec{a}_{P_2/P_1} &= (-16\dot{\theta}\sin 0 - 16\dot{\theta}^2\cos 0 + 0,848 a)\vec{i} + (16\dot{\theta}\cos 0 - 16\dot{\theta}^2\sin 0)\vec{j} - 0,53a\vec{k} \\
\dot{\theta} &= \frac{2\pi}{27}, \quad a = -\frac{\pi^2}{12}\sin\frac{\pi}{12}t
\end{align*}
\]
\[t = 3 \, \text{de}, \quad a = -\frac{\pi^2}{24}\sqrt{2} \]

\[\vec{a}_{p_2/p_1} = \left[-16\frac{2\pi}{27}\sin\left(\frac{\pi}{3}\right) - 16\left(\frac{2\pi}{9}\right)^2 \cos\left(\frac{\pi}{3}\right) + 0,848 \left(-\frac{\pi^2}{24}\sqrt{2}\right) \right] \vec{i} + \\
+ \left[16\frac{2\pi}{27}\cos\left(\frac{\pi}{3}\right) - 16\left(\frac{2\pi}{9}\right)^2 \sin\left(\frac{\pi}{3}\right) \right] \vec{j} - 0,53\left(-\frac{\pi^2}{24}\sqrt{2}\right) \vec{k} \]

\[\vec{a}_{p_2/p_1} = -7,62 \vec{i} - 4,89 \vec{j} + 0,31 \vec{k} \]
SORU 3) Şekildeki mekanizmada dairesel levhanın merkezin hızı sola doğru $V_D = 2\, cm / s$ (sabit) olduğuna göre AB çubuğunun verilen konum için

b) açısal hızı
c) açısal ivmesini bulunuz

$R = 10\, cm.$
$AB = 30\, cm.$
$BC = 40\, cm.$

$\theta = 60^0$ için

a) $\omega_{AB} = ?$
b) $\alpha_{AB} = ?$

Çözüm:

$I_D = \omega_D R$, $V_C = \omega_D \frac{\omega_B C}{IC} \Rightarrow V_C = 2V_D$, $V_C = 4\, cm / s$

$V_C = \omega_{BC} \frac{V_c}{IC} \Rightarrow \omega_{BC} = \frac{V_c}{IC}$, $\frac{\omega_C}{I_C} = \frac{I_I_D}{I_D} - 2 R$, $\frac{I_I_D}{I_D} = A\frac{I_D}{I_D} \tan \theta$

$A\frac{I_D}{I_D} = AB \cos \theta + BC \cos \varphi$, $\sin \varphi = \frac{EB}{BC}$, $\frac{EB}{AB} = AB \sin \theta - 2R$, $\frac{EB}{AB} = 30 \sin 60^0 - 2 \times 10$

$\frac{EB}{AB} = 5,981\, cm$, $\sin \varphi = \frac{5,981}{40}$, $\sin \varphi = 0,14896 \Rightarrow \varphi = 8,567^0$

$A\frac{I_D}{I_D} = 30 \cos 60^0 + 40 \cos 8,567^0$, $A\frac{I_D}{I_D} = 54,554\, cm$, $\frac{I_I_D}{I_D} = 54,554 \tan 60^0$

$\frac{I_I_D}{I_D} = 94,49\, cm$, $\frac{I_C}{IC} = 94,49 - 2 \times 10$, $\frac{I_C}{IC} = 74,49\, cm$, $\omega_{BC} = \frac{4}{74,49}$

$\omega_{BC} = 0,0537\, rad / s$, $V_B = \omega_{BC} I_B$, $\frac{I_B}{I_A} = I_A - \frac{A\frac{I_D}{I_D}}{\cos \theta}$, $\frac{I_A}{I_A} = \frac{54,554}{\cos 60^0}$, $\frac{I_A}{I_A} = 109,11\, cm$, $\frac{I_B}{I_B} = 109,11 - 30$, $\frac{I_B}{I_B} = 79,11\, cm$, $V_B = 0,0537 \times 79,11$

$V_B = 4,248\, cm / s$, $V_B = \omega_{AB} A\frac{I_B}{AB}$ \Rightarrow $\omega_{AB} = \frac{V_B}{A\frac{I_B}{AB}}$, $\omega_{AB} = \frac{4,248}{30} \Rightarrow \omega_{AB} = 0,142\, rad / s$
\[\ddot{a}_B = \ddot{a}_C + \ddot{a}_{BC/C} , \quad \ddot{a}_b = \alpha_{AB} \ddot{k} \wedge \ddot{AB} - \omega_{AB} \wedge \ddot{V}_B , \quad \ddot{V}_B = V_B \sin \theta \ddot{t} - V_B \cos \theta \ddot{j} \]
\[\ddot{V}_B = 4,248 \sin 60^\circ \ddot{t} - 4,248 \cos 60^\circ \ddot{j} , \quad \ddot{V}_B = 3,679 \ddot{t} - 2,124 \ddot{j} \]
\[\ddot{AB} = \ddot{AB} \cos 0 \ddot{t} + \ddot{AB} \sin 0 \ddot{j} , \quad \ddot{AB} = 30 \cos 60^\circ \ddot{t} + 30 \sin 60^\circ \ddot{j} , \quad \ddot{AB} = 15 \ddot{t} + 15 \sqrt{3} \ddot{j} \]
\[\ddot{a}_b = \alpha_{AB} \ddot{k} \wedge (15 \ddot{t} + 15 \sqrt{3} \ddot{j}) - 0,142 \ddot{k} \wedge (3,679 \ddot{t} - 2,124 \ddot{j}) \]
\[\ddot{a}_b = (-15 \sqrt{3} \alpha_{AB} - 0,302) \ddot{t} + (15 \alpha_{AB} - 0,522) \ddot{j} \]
\[\ddot{a}_c = R \alpha_D \ddot{t} - R \omega_D^2 \ddot{j} \quad \alpha_D = 0 \quad (V_D \text{ sabit ve dolayısıyla } \omega_D \text{ sabit olduğundan}) \]
\[V_D = R \omega_D \quad \Rightarrow \quad \omega_D = \frac{V_D}{R} , \quad \ddot{a}_c = -\frac{V_D^2}{R} \ddot{j} , \quad \ddot{a}_c = -\frac{V_D^2}{R} \ddot{j} , \quad \ddot{a}_c = -0,4 \ddot{j} \]
\[\ddot{a}_{BC/C} = \alpha_{BC} \ddot{k} \wedge \ddot{CB} + \omega_{BC} \ddot{k} \wedge \ddot{V}_{BC/C} , \quad \ddot{CB} = \ddot{BC} \cos \varphi \ddot{i} + \ddot{BC} \sin \varphi \ddot{j} \]
\[\ddot{CB} = -40 \cos 8,567^\circ \ddot{t} + 40 \sin 8,567^\circ \ddot{j} , \quad \ddot{CB} = -39,554 \ddot{t} + 5,959 \ddot{j} \]
\[\ddot{V}_{BC/C} = \ddot{V}_B - \ddot{V}_C , \quad \ddot{V}_C = 4 \ddot{t} , \quad \ddot{V}_{BC/C} = -0,321 \ddot{t} - 2,124 \ddot{j} \]
\[\ddot{a}_{BC/C} = \alpha_{BC} \ddot{k} \wedge (-39,554 \ddot{t} + 5,959 \ddot{j}) + 0,0537 \ddot{k} \wedge (-0,321 \ddot{t} - 2,124 \ddot{j}) \]
\[\ddot{a}_{BC/C} = (-5,959 \alpha_{BC} + 0,114) \ddot{t} + (-39,554 \alpha_{BC} - 0,00172) \ddot{j} \]
\[\ddot{a}_B = (-15 \sqrt{3} \alpha_{AB} - 0,302) \ddot{t} + (15 \alpha_{AB} - 0,522) \ddot{j} = (-5,959 \alpha_{BC} + 0,114) \ddot{t} + (-39,554 \alpha_{BC} - 0,40172) \ddot{j} \]
\[\begin{align*}
-15 \sqrt{3} \alpha_{AB} - 0,302 & = -5,959 \alpha_{BC} + 0,114 \\
+ \sqrt{3}(15 \alpha_{AB} - 0,522) & = \sqrt{3}(39,554 \alpha_{BC} - 0,40172)
\end{align*}
\]
\[\begin{align*}
\alpha_{BC} & = 0,0079 \text{ rad/s}^2 \\
\alpha_{AB} & = -0,0142 \text{ rad/s}^2 \\
74,469 \alpha_{BC} & = 0,59
\end{align*} \]
SORU 1) Bir maddesel nokta bir doğru üzerinde \(a = -\frac{\pi^2}{4} s \) ivme-konum bağıntısı ile hareket ediyor. \(t = 0 \) da konum \(s = 0 \) ve hız \(V = 6 \text{ m/s} \) olduğuna göre \(t = 0.5 \) deki konumu hızı ve ivmeyi hesaplayıniz.

Çözüm:

\(a \) yerine \(\frac{d^2s}{dt^2} \) yazılırsa \(a = -\frac{\pi^2}{4} s \) denklemi \(\frac{d^2s}{dt^2} + \frac{\pi^2}{4} s = 0 \) denklemine dönüşür. Bu denklemin genel çözümü

\[s = A \cos \frac{\pi}{2} t + B \sin \frac{\pi}{2} t \]

şeklindedir. Buradan

\[V = \frac{ds}{dt} = -\frac{\pi}{2} A \sin \frac{\pi}{2} t + \frac{\pi}{2} B \cos \frac{\pi}{2} t \]

\(t = 0 \) da \(s = 0 \) \(\Rightarrow \) \(0 = A \cos 0^\circ + B \sin 0^\circ \) \(\Rightarrow \) \(A = 0 \)

\(t = 0 \) da \(V = 6 \) \(\Rightarrow \) \(6 = -\frac{\pi}{2} A \sin 0^\circ + \frac{\pi}{2} B \cos 0^\circ \) \(\Rightarrow \) \(B = \frac{12}{\pi} \)

\(s = \frac{12}{\pi} \sin \frac{\pi}{2} t \), \(V = 6 \cos \frac{\pi}{2} t \), \(a = -3\pi \sin \frac{\pi}{2} t \)

\(t = 0,5 \) de \(s = \frac{12}{\pi} \sin \frac{\pi}{4} \), \(V = 6 \cos \frac{\pi}{4} \), \(a = -3\pi \sin \frac{\pi}{4} \), \(s = \frac{6\sqrt{2}}{\pi} \), \(s = 2,7 \text{ m} \).

\[V = 3\sqrt{2} \text{ m/s} \], \(V = 4,24 \text{ m/s} \), \(a = -3\frac{\sqrt{2}}{2} \pi \), \(a = -6,66 \text{ m/s}^2 \)
SORU 2) Bir t anında xoy düzleminde bulunan OABC dördürtgen levhası Δ
ekseni etrafında \(\omega = 10 \text{ Rad/s} \) sabit açısal hız ile dönüyor. Bu an için C
noktasının hız ve ivme vektörlerini ve Δ eksenine olan uzaklığını bulunuz.

Çözüm:
\[
\vec{V}_c = \omega \wedge \overrightarrow{OC}, \quad \vec{\omega} = \omega \vec{U}_\Delta, \quad \vec{U}_\Delta = \frac{4}{5}\vec{i} + \frac{3}{5}\vec{j}, \quad \vec{\omega} = \frac{40}{5}\vec{i} + \frac{30}{5}\vec{j}, \quad \overrightarrow{OC} = 30\vec{j}
\]

\[
\vec{V}_c = \left(\frac{40}{5}\vec{i} + \frac{30}{5}\vec{j}\right) \wedge 30\vec{j}, \quad |\vec{V}_c| = r|\vec{\omega}| \Rightarrow r = \frac{|\vec{V}_c|}{|\vec{\omega}|}, \quad r = \frac{240}{10}
\]

\[
|\vec{r}| = 24 \text{ cm}
\]

\[\vec{a}_c = \vec{a} \wedge \overrightarrow{OC} + \vec{\omega} \wedge \vec{V}_c, \quad \alpha = 0 \ \ (\ \vec{\omega} \ \text{sabit olduğundan})
\]

\[\vec{a}_c = \left(\frac{40}{5}\vec{i} + \frac{30}{5}\vec{j}\right) \wedge 240\vec{k}, \quad |\vec{a}_c| = 1440\vec{i} - 1920\vec{j}
\]
SORU 3) Şekildeki mekanizmada dairesel levhanın merkezin hızı sola doğru \(V_D = 2 \text{ cm/s} \) (sabit) olduğuna göre AB çubuğunun verilen konum için

d) açısal hızını
e) açısal ivmesini bulunuz

\[R = 10 \text{ cm}. \]
\[\overline{BC} = 40 \text{ cm}. \]
\[\theta = 60^\circ \] için

a) \(\omega_{AB} = ? \)
b) \(\alpha_{AB} = ? \)

Çözüm:

\[\omega_{BC} = \frac{V_C}{IC} \]
\[V_D = R \omega_D \Rightarrow V_C = 2V_D, \]
\[V_C = IC \omega_{BC}, \]
\[\omega_{BC} = \frac{V_C}{IC} \]
\[V_B = \overline{IB} \omega_{BC} \quad \Rightarrow \quad V_B = \frac{V_C}{IC} \]
\[\overline{IB} = \frac{BC}{\cos \theta}, \quad \overline{IB} = \frac{40}{\cos 60^\circ}, \quad \overline{IB} = 80 \text{ cm}. \]
\[IC = IB \sin \theta, \quad IC = 80 \sin 60^\circ, \quad IC = 69,282 \text{ cm}. \]
\[\omega_{BC} = 0,0577 \text{ rad/s}, \]
\[V_B = 80 \times 0,0577, \]
\[V_B = 4,619 \text{ cm/s}, \]
\[\omega_{AB} = \frac{4,619}{23,1} \]
\[\omega_{AB} = 0,2 \text{ rad/s}, \quad \omega_D = 0,2 \text{ rad/s} \]

b) \(\ddot{a}_B = \ddot{a}_C + \alpha_{BC} \times \ddot{V}_C \quad \Rightarrow \quad \ddot{a}_B = 0 \quad (\ddot{V}_D \text{ sabit olduğundan}), \]
\[\ddot{a}_C = -0,4 \hat{j}, \quad \alpha_{BC} = \alpha_{BC} \hat{k} \wedge \overline{CB} + \omega_{BC} \hat{k} \wedge \ddot{V}_{B/C}, \]
\[\ddot{V}_B = V_B \sin \theta \hat{i} - V_B \cos \theta \hat{j}, \quad \ddot{V}_B = 4 \hat{i} - 2,31 \hat{j}, \quad \ddot{V}_{B/C} = -2,31 \hat{j} \]
\[\ddot{a}_B = \alpha_{BC} \hat{k} \wedge \overline{AB} - \alpha_{BC} \hat{k} \wedge \ddot{V}_B, \quad \overline{AB} = AB \cos \theta \hat{i} + AB \sin \theta \hat{j} \]
\[\overrightarrow{AB} = 23,1 \cos 60^\circ \hat{i} + 23,1 \sin 60^\circ \hat{j}, \quad \overrightarrow{AB} = 11,55 \hat{i} + 20 \hat{j} \]

\[\vec{a}_b = \alpha_{AB} \hat{k} \wedge (11,55 \hat{i} + 20 \hat{j}) - 0,2 \hat{k} \wedge (4 \hat{i} - 2,31 \hat{j}) \]

\[\vec{a}_b = (-20 \alpha_{AB} - 0,462) \hat{i} + (11,55 \alpha_{AB} - 0,8) \hat{j} \]

\[\vec{a}_b = (-20 \alpha_{AB} - 0,462) \hat{i} + (11,55 \alpha_{AB} - 0,8) \hat{j} = (-0,4 \hat{j}) + (0,133 \hat{i} - 40 \alpha_{BC} \hat{j}) \]

\[(-20 \alpha_{AB} - 0,462) \hat{i} + (11,55 \alpha_{AB} - 0,8) \hat{j} = 0,133 \hat{i} - (40 \alpha_{BC} + 0,4) \hat{j} \]

\[-20 \alpha_{AB} - 0,462 = 0,133 \quad \Rightarrow \quad \alpha_{AB} = -0,03 \text{ rad} / s \]

\[11,55 \alpha_{AB} - 0,8 = -40 \alpha_{BC} - 0,4 \quad \Rightarrow \quad \alpha_{BC} = 0,0014 \text{ rad} / s^2 \]
Soru 1: D diski ve ona mafsallı çubuktan oluşan mekanizmada şekilde gösterildiği anda D diskinin açısal hızı \(\omega_D = 6 \text{rad/s} \) ve açısal ivmesi \(\alpha_D = 2 \text{rad/s}^2 \) dir. Şekilde gösterildiği anda

a) AB çubuğunun açısal hızını
b) AB çubuğunun açısal ivmesini
c) AB çubuğunun orta noktas G nin ivmesini hesaplayınız.

Çözüm:

\[
\begin{align*}
V_A &= \frac{V_B}{IB} \\
\omega_{\text{ab}} &= \frac{8}{5} \sqrt{3} \\
\omega_{\text{ab}} &= 2,77 \text{rad/s} \\
V_A &= IA \omega_{\text{ab}} \\
V_A &= 50 \frac{8}{5} \sqrt{3} \\
V_A &= 80 \sqrt{3} \text{cm/s} \\
\end{align*}
\]

\[
\begin{align*}
\vec{a}_B &= \vec{a}_A + \vec{a}_{\beta/b} \\
\vec{a}_B &= -\alpha_D \hat{k} \land DB - \omega_D \hat{k} \land \vec{V}_B \\
\vec{a}_B &= -2k \land 40 \hat{i} - 6k \land (-240 \hat{j}) \\
\vec{v}_{B/A} &= -1440 \hat{i} - 80 \hat{j} \\
\vec{a}_A &= \alpha_{\text{ab}} \hat{k} \land AB + \omega_{\text{ab}} \hat{k} \land \vec{V}_{B/A} \\
\vec{v}_{B/A} &= \vec{V}_B - \vec{V}_A \\
\vec{v}_{B/A} &= -80 \sqrt{3} \hat{i} - 240 \hat{j} \\
\vec{V}_{B/A} &= -50 \sqrt{3} \hat{i} + 50 \hat{j} \\
\vec{v}_{B/A} &= \alpha_{\text{ab}} \hat{k} \land (-50 \sqrt{3} \hat{i} + 50 \hat{j}) + \frac{8}{5} \sqrt{3} \hat{k} \land (-80 \sqrt{3} \hat{i} - 240 \hat{j}) \\
\vec{v}_{B/A} &= (-50 \alpha_{\text{ab}} + 384 \sqrt{3}) \hat{i} + (-50 \sqrt{3} \alpha_{\text{ab}} - 384) \hat{j} \\
\vec{v}_{B/A} &= -1440 \hat{i} - 80 \hat{j} + [(-50 \alpha_{\text{ab}} + 384 \sqrt{3}) \hat{i} + (-50 \sqrt{3} \alpha_{\text{ab}} - 384) \hat{j}] \\
-1440 \hat{i} - 80 \hat{j} &= (-50 \alpha_{\text{ab}} + a_A + 384 \sqrt{3}) \hat{i} + (-50 \sqrt{3} \alpha_{\text{ab}} - 384) \hat{j} \\
-50 \alpha_{\text{ab}} + a_A + 384 \sqrt{3} &= -1440 \\
-50 \sqrt{3} \alpha_{\text{ab}} - 384 &= -80 \\
\alpha_{\text{ab}} &= \frac{80 - 384}{50 \sqrt{3}} \\
\alpha_{\text{ab}} &= -3,51 \text{rad/s}^2 \\
a_A &= -1929,6 \text{cm/s}^2
\end{align*}
\]

\[\]
c) $\ddot{a}_G = \ddot{a}_A + \ddot{a}_{G/A}$, $\ddot{a}_A = -1929,6 \vec{i}$, $\ddot{a}_{G/A} = \alpha_{AB} \vec{k} \wedge \overrightarrow{AG} + \omega_{AB} \vec{k} \wedge \vec{V}_{G/A}$

$\vec{V}_{G/A} = \omega_{AB} \vec{k} \wedge \overrightarrow{AG}$, $\overrightarrow{AG} = \frac{1}{2} \overrightarrow{AB}$, $\overrightarrow{AG} = \frac{1}{2} (-50\sqrt{3} \vec{i} + 50 \vec{j})$, $\overrightarrow{AG} = -25\sqrt{3} \vec{i} + 25 \vec{j}$

$\vec{V}_{G/A} = \frac{8}{5} \sqrt{3} \vec{k} \wedge (-25\sqrt{3} \vec{i} + 25 \vec{j})$, $\vec{V}_{G/A} = -40\sqrt{3} \vec{i} - 120 \vec{j}$

$\ddot{a}_{G/A} = -3,51 \vec{k} \wedge (-25\sqrt{3} \vec{i} + 25 \vec{j}) + \frac{8}{5} \sqrt{3} \vec{k} \wedge (-40\sqrt{3} \vec{i} - 120 \vec{j})$

$\ddot{a}_{G/A} = 420,3 \vec{i} - 40 \vec{j}$, $\ddot{a}_G = -1929,6 \vec{i} + (420,3 \vec{i} - 40 \vec{j})$

$\ddot{a}_G = -1509,3 \vec{i} - 40 \vec{j}$, $|\ddot{a}_G| = 1509,8 \text{ cm/s}^2$
Soru 2: Şekilde otomatik kaynak makinesi gösterilmektedir. İki kaynak ucu G ve H nin hareketi D hidrolik silindiri ve BC çubuğu ile kontrol edilmektedir. Silindir düzey düzlemdeki bir plakaya tesbit edilmişdir. Bu plaka Şekilde gösterildiği anda A etrafında pozitif yönde ω = 1,6 rad/s sabit açısal hız ile dönüyor. Aynı anda kaynak gurubunun EF uzunluğu 300mm/s sabit hız ile artmaktadır. Bu anda a) G ucunun hızını b) G ucunun ivmesini hesaplayınız.

Çözüm:

a)
\[\vec{V}_G = \vec{V}_{bağ} + \vec{V}_{sür} , \quad \vec{V}_{bağ} = \omega \vec{k} \times \overrightarrow{AG} , \quad \overrightarrow{AG} = 600\hat{i} + 400\hat{j} \]
\[\vec{V}_{sür} = 1,6\vec{k} \times (600\hat{i} + 400\hat{j}) , \quad \vec{V}_{sür} = -640\hat{i} + 960\hat{j} , \quad \vec{V}_G = 300\hat{i} + (-640\hat{i} + 960\hat{j}) \]
\[\vec{V}_G = -340\hat{i} + 960\hat{j} , \quad |\vec{V}_G| = 1018,43 \text{ mm/s} \]

b)
\[\ddot{a}_G = \ddot{a}_{bağ} + \ddot{a}_{sür} + \ddot{a}_{cor} , \quad \ddot{a}_{bağ} = \ddot{0} \text{ (} \vec{V}_{bağ} \text{ sabit ve bağlı hareket doğrusu olduğu için)} \]
\[\ddot{a}_{sür} = \alpha \vec{k} \times \overrightarrow{AG} + \ddot{\omega} \vec{k} \times \vec{V}_{sür} , \quad \alpha = 0 \text{ (} \omega \text{ sabit olduğu için)} \]
\[\ddot{a}_{sür} = 1,6\vec{k} \times (-640\hat{i} + 960\hat{j}) , \quad \ddot{a}_{sür} = -1536\hat{i} - 1024\hat{j} \]
\[\ddot{a}_{cor} = 2\ddot{\omega} \vec{k} \times \vec{V}_{bağ} , \quad \ddot{a}_{cor} = 3,2\vec{k} \times 300\hat{i} , \quad \ddot{a}_{cor} = 960\hat{j} \]
\[\ddot{a}_G = (-1536\hat{i} - 1024\hat{j}) + 960\hat{j} \]
\[\ddot{a}_G = -1536\hat{i} - 64\hat{j} , \quad |\ddot{a}_G| = 1537,3 \text{ mm/s}^2 \]
Soru 3: 6kg Kütleli ve \(\ell = 20\text{cm} \) kenar uzunluklu kare şeklindeki homojen malzemeden yapılan aşağıdaki cismi A köşesi etrafında ilk hızız harekete bırakıyor. Cismin AB köşegeninin yatayla \(\theta \) açısı yaptığı anda A mesnetindeki tepki kuvvetini hesaplayınız.
\(\ell = 20\text{cm} \)
\(m = 6\text{kg} \)
\(\theta = 30^0 \)

Çözüm:

\[
\sum \vec{F} = m \vec{a}_G
\]
\[
\vec{a}_G = \vec{a} + \vec{\omega} \times \vec{V}
\]
\[
\vec{V}_G = \vec{\omega} \times \vec{AG} \quad \text{ve} \quad \vec{AG}_2 = \vec{AG} \cos \theta \hat{i} + \vec{AG} \sin \theta \hat{j} \quad \text{ve} \quad \vec{AG} = \frac{\vec{AB}}{2} \text{,} \quad \vec{AB} = \vec{\sqrt{21}} \text{,} \quad \vec{AG} = \frac{\sqrt{2}}{2}
\]
\[
\vec{AG}_2 = \frac{\sqrt{2}}{2} \cos 30^0 \hat{i} + \frac{\sqrt{2}}{2} \sin 30^0 \hat{j} \quad \text{ve} \quad \vec{AG}_2 = \frac{\sqrt{6}}{4} \hat{i} + \frac{\sqrt{2}}{4} \hat{j}
\]

\[
\sum M_A = I_A \alpha \quad \Rightarrow \quad \alpha = \frac{\sum M_A}{I_A} \text{,} \quad \sum M_A = mg \vec{AG} \cos \theta \text{,} \quad \sum M_A = \frac{\sqrt{6}}{4} mgl
\]
\[
I_A = I_G + m(\vec{AG})^2 \quad \text{ve} \quad I_G = \frac{1}{12} m l^2 + \frac{1}{12} m l^2 \quad \text{ve} \quad I_0 = \frac{1}{6} m l^2 \quad \text{ve} \quad I_A = \frac{1}{6} m l^2 + m(\frac{\sqrt{2}}{2})^2
\]
\[
I_A = \frac{1}{6} m l^2 + \frac{2}{4} m l^2 \quad \text{ve} \quad \alpha = \frac{\sqrt{6} mgl}{\frac{4}{3} m l^2} \quad \text{ve} \quad \alpha = \frac{3\sqrt{6} g}{8} \quad \text{ve} \quad \alpha = \frac{3\sqrt{6} 9,81}{8} 0,2
\]

\[
\alpha = 45,06 \text{ rad } / \text{s}^2 \quad \text{ve} \quad \tau_{(1)-(2)} = T_1 = T_2 \quad \text{ve} \quad T_1 = 0 \text{ (ilk hızlar sıfır olduğundan)}
\]
\[
\tau_{(1)-(2)} = mg \vec{AG} \sin \theta \quad \text{ve} \quad \tau_{(1)-(2)} = \frac{\sqrt{2}}{4} mgl \quad \text{ve} \quad T_2 = \frac{1}{2} I_0 \omega^2 \quad \text{ve} \quad T_2 = \frac{1}{2} \frac{2}{3} m l^2 \omega^2
\]
\[
T_2 = \frac{2}{6} m l^2 \omega^2 \quad \text{ve} \quad \frac{\sqrt{2}}{4} mgl = \frac{2}{6} m l^2 \omega^2 \quad \Rightarrow \quad \omega = \sqrt{\frac{\sqrt{2} g}{41}} \quad \text{ve} \quad \omega = \sqrt{\frac{\sqrt{2} 9,81}{4 \times 0,2}}
\]
\[
\omega = 7,213 \text{ rad } / \text{s} \quad \text{ve} \quad \vec{V}_G = 7,213 \hat{k} \wedge (\frac{\sqrt{6}}{4} \hat{i} + \frac{\sqrt{2}}{4} \hat{j}) \quad \text{ve} \quad \vec{V}_G = -0,51 \hat{i} + 0,883 \hat{j}
\]
\[
\vec{a}_G = 45,06 \hat{k} \wedge (\frac{\sqrt{6}}{4} 0,2 \hat{i} + \frac{\sqrt{2}}{4} 0,2 \hat{j}) + 7,213 \hat{k} \wedge (-0,51 \hat{i} + 0,883 \hat{j})
\]
\[
\vec{a}_G = -9,555 \hat{i} + 1,84 \hat{j}
\]
\[
\sum F_x = m a_{G_x} \Rightarrow R_{A_x} = 6 \ast (-9,555) \Rightarrow R_{A_x} = -57,3 \text{N.}
\]
\[
\sum F_y = m a_{G_y} \Rightarrow R_{A_y} + m g = 6 \ast 1,84 \Rightarrow R_{A_y} = -47,82 \text{N.}
\]
\[
R_A = 74,6 \text{N.}
\]
MAKİNE 2 G4 2002-2003 GÜZ YARIYILI DİNAMİK DERSİ 2. VİZE SORULARI VE CEVAPLARI

Soru 1: AB çubuğunun A ucu sağa doğru sabit \(V_A = 2 \text{m/s} \) hızı ile hareket ediyor. Şekilde gösterildiği anda, a) AB çubuğunun açısal ivmesini hesaplayınız.
b) AB çubuğunun orta noktası G nin ivmesini hesaplayınız.

Çözüm:

![Diagram](image)

a) \(\ddot{a}_B = \ddot{a}_A + \ddot{a}_{B/A} \), \(\ddot{a}_B = \ddot{a}_{BD} \wedge \ddot{B} + \dot{\omega}_{BD} \wedge \dot{\vec{V}}_B \), \(\ddot{a}_{B/A} = \ddot{a}_{AB} \wedge \ddot{A} + \dot{\omega}_{AB} \wedge \dot{\vec{V}}_{B/A} \)

\(\ddot{a}_A = 0 \) (\(V_A \) sabit ve A noktasının hareketi doğrusal olduğundan)

\(\ddot{DB} = 1,25 \hat{j} \), \(\ddot{AB} = -\ddot{AB} \cos 30^\circ \hat{i} - \ddot{AB} \sin 30^\circ \hat{j} \), \(\ddot{AB} = -\frac{3}{2} \sqrt{3} \hat{i} - \frac{3}{2} \hat{j} \)

I ani dönme merkezi olduğundan \(\ddot{\omega}_{AB} = 0 \), \(\ddot{\vec{V}}_B = \ddot{\vec{V}}_A = 2 \hat{i} \), \(\ddot{V}_{B/A} = \ddot{V}_B - \ddot{V}_A = 0 \)

\(V_B = BD \omega_{BD} \Rightarrow \omega_{BD} = \frac{V_B}{BD} , \quad \omega_{BD} = \frac{2}{1,25} , \quad \omega_{BD} = 1,6 \text{ rad} / \text{s} \)

\(\ddot{a}_B = \alpha_{BD} \hat{k} \wedge 1,25 \hat{j} - 1,6 \hat{k} \wedge 2 \hat{i} \), \(\ddot{a}_B = -1,25 \alpha_{BD} \hat{i} - 3,2 \hat{j} \)

\(\ddot{a}_{B/A} = \alpha_{AB} \hat{k} \wedge (-\frac{3}{2} \sqrt{3} \hat{i} - \frac{3}{2} \hat{j}) \), \(\ddot{a}_{B/A} = \frac{3}{2} \alpha_{AB} \hat{i} - \frac{3}{2} \sqrt{3} \alpha_{AB} \hat{j} \)

\(\ddot{a}_B = -1,25 \alpha_{BD} \hat{i} - 3,2 \hat{j} = \frac{3}{2} \alpha_{AB} \hat{i} - \frac{3}{2} \sqrt{3} \alpha_{AB} \hat{j} \)

\[
\begin{align*}
\frac{3}{2} \alpha_{AB} &= -1,25 \alpha_{BD} \\
- \frac{3}{2} \sqrt{3} \alpha_{AB} &= -3,2
\end{align*}
\]

\(\frac{3}{2} \alpha_{AB} = 1,232 \text{ rad} / \text{s}^2 \)

\(- \frac{3}{2} \sqrt{3} \alpha_{AB} = -1,478 \text{ rad} / \text{s}^2 \)

b) \(\ddot{a}_G = \ddot{a}_A + \ddot{a}_{G/A} \), \(\ddot{a}_{G/A} = \alpha_{AB} \hat{k} \wedge AG + \omega_{AB} \hat{k} \wedge \vec{V}_{G/A} \), \(\ddot{AG} = \frac{\ddot{AB}}{2} = -\frac{3}{4} \sqrt{3} \hat{i} - \frac{3}{4} \hat{j} \)

\(\ddot{a}_{G/A} = 1,232 \hat{k} \wedge (-\frac{3}{4} \sqrt{3} \hat{i} - \frac{3}{4} \hat{j}) \), \(\ddot{a}_G = 0,924 \hat{i} - 1,6 \hat{j} \), \(a_G = 1,848 \text{ m/s}^2 \)
Soru 2: Şekildeki vincin AB ulaşım kolumnun uzunluğu 150 mm/s sabit hızı ile artıyor. Aynı anda AB ulaşım kolu 0,075 rad/s. Sabit açısal hızı ile alçıyor. \(\theta = 30^0 \) olduğu bilindiğine göre
a) Ulaşım kolumnun B uç noktasının hızını hesaplayınız.
b) Ulaşım kolumnun B uç noktasının ivmesini hesaplayınız.

Çözüm:

a) \(\vec{V}_B = \vec{V}_{bağ} + \vec{V}_{sür} \) , \(\vec{V}_{bağ} = V_{bağ} \cdot (\cos \theta \hat{i} + \sin \theta \hat{j}) \) , \(\vec{V}_{bağ} = 75\sqrt{3} \hat{i} + 75 \hat{j} \)

\(\vec{V}_{sür} = \vec{ω} \times \overrightarrow{AB} \) , \(\vec{ω} = -0,075 \hat{k} \) , \(\overrightarrow{AB} = 6000*(\cos 0 \hat{i} + \sin 0 \hat{j}) \) , \(\overrightarrow{AB} = 3000\sqrt{3} \hat{i} + 3000 \hat{j} \)

\(\vec{V}_{sür} = -0,075 \hat{k} \times (3000\sqrt{3} \hat{i} + 3000 \hat{j}) \) , \(\vec{V}_{sür} = 225 \hat{i} - 389,71 \hat{j} \) , \(\vec{V}_B = 354,9 \hat{i} - 314,71 \hat{j} \)

\(\vec{V}_B = 474,3 \text{ mm/s} \)

b) \(\vec{a}_B = \vec{a}_{bağ} + \vec{a}_{sür} + \vec{a}_{cor} \) , \(\vec{a}_{bağ} = 0 \) (\(V_{bağ} \) sabit ve bağlı hareket doğrusal olduğundan)

\(\vec{a}_{sür} = \alpha \hat{k} \times \overrightarrow{AB} + \vec{ω} \times \vec{V}_{sür} \) , \(\alpha = 0 \) (\(\vec{ω} \) sabit olduğundan)

\(\vec{a}_{sür} = -0,075 \hat{k} \times (225 \hat{i} - 389,71 \hat{j}) \) , \(\vec{a}_{sür} = -29,23 \hat{i} - 16,875 \hat{j} \)

\(\vec{a}_{cor} = 2\vec{ω} \times \vec{V}_{bağ} \) , \(\vec{a}_{cor} = -0,15 \hat{k} \times (75\sqrt{3} \hat{i} + 75 \hat{j}) \) , \(\vec{a}_{cor} = 11,25 \hat{i} - 19,486 \hat{j} \)

\(\vec{a}_B = -17,98 \hat{i} - 36,36 \hat{j} \) , \(\vec{a}_B = 40,56 \text{ mm/s}^2 \)
Soru 3: ℓ uzunluğundaki çubuk ve $\ell/4$ kenar uzunluğundaki kare levhanın homojen malzemesine ait olup, aşağıdaki cisim ilk hızıyla hareket etmeye başlıyor. Cismin yatayla θ açısında A'nın tepki kuvvetini hesaplayınız.

$$\ell = 40\text{cm}.$$
$m_{\text{çubuk}} = 3\text{kg}.$
$m_{\text{kare}} = 9\text{kg}.$
$\theta = 45^0$

Çözüm:

$$\sum \vec{F} = m\vec{a}_g$$

$$\vec{a}_g = \alpha \hat{k} \times \overrightarrow{AG} + \omega \hat{k} \times \vec{V}_G + \vec{V}_G = \omega \hat{k} \times \overrightarrow{AG},$$
$$\overrightarrow{AG} = \overrightarrow{m_c \overrightarrow{AG}_c} + m_k \overrightarrow{AG}_k$$

$$\overrightarrow{AG}_c = \frac{1}{2}\overrightarrow{i} , \quad \overrightarrow{AG}_c = 0,2\overrightarrow{i} , \quad \overrightarrow{AG}_k = (1-\frac{1}{8})\overrightarrow{i} + \frac{1}{8}\overrightarrow{j} , \quad \overrightarrow{AG}_k = 0,35\overrightarrow{i} + 0,05\overrightarrow{j}$$

$$\overrightarrow{AG}_1 = \frac{3(0,2\overrightarrow{i}) + 9(0,35\overrightarrow{i} + 0,05\overrightarrow{j})}{3 + 9} , \quad \overrightarrow{AG}_1 = 0,3125\overrightarrow{i} + 0,0375\overrightarrow{j} , \quad \overrightarrow{AG} = |\overrightarrow{AG}|$$

$$\overrightarrow{AG} = 0,314742\text{m} , \quad \varphi = \arctan \frac{0,0375}{0,3125} , \quad \varphi = 6,843^0$$

$$\overrightarrow{AG}_2 = \overrightarrow{AG}\cos(\theta + \varphi)\overrightarrow{i} + \overrightarrow{AG}\sin(\theta + \varphi)\overrightarrow{j} , \quad \overrightarrow{AG}_2 = 0,19445\overrightarrow{i} + 0,2475\overrightarrow{j}$$

$$\sum M_A = I_A \alpha \Rightarrow \alpha = \sum \frac{M_A}{I_A} , \quad \sum M_A = (m_c + m_k)g \overrightarrow{AG}\cos(\theta + \varphi)$$

$$\sum M_A = (3 + 9)9,81*0,314742\cos(45^0 + 6,843^0) , \quad \sum M_A = 22,8912\text{Nm}.$$

$$I_A = (I_A)_{\text{çubuk}} + (I_A)_{\text{kare}} + m_k (\overrightarrow{AG}_{\text{kare}})^2 , \quad I_A = \frac{1}{3}m_c \overrightarrow{i}^2 + 2\frac{1}{12}m_k (\frac{1}{4})^2 + m_k [(1-\frac{1}{8})^2 + (\frac{1}{8})^2]$$

$$I_A = \frac{1}{3}0,4^2 + \frac{1}{9}0,1^2 + 9(0,35^2 + 0,05^2) , \quad I_A = 1,3\text{kgm}^2, \quad \alpha = \frac{22,8912}{1,3}$$

$$\alpha = 17,609\text{rad} / \text{s}^2$$
\[\tau_{(1) \rightarrow (2)} + T_1 = T_2 \quad , \quad T_1 = 0 \text{ (ilk hizlar sıfır olduğundan)} \quad , \quad T_2 = \frac{1}{2} I_a \omega^2 \]

\[\tau_{(1) \rightarrow (2)} = mg h \quad , \quad h = \bar{AG} [\sin(\theta + \varphi) - \sin \varphi] \quad , \quad h = 0,21 m. \]

\[\tau_{(1) \rightarrow (2)} = 12 \times 9,81 \times 0,21 = \frac{1}{2} I_a \omega^2 \quad \Rightarrow \quad \omega = \sqrt{\frac{24 \times 9,81 \times 0,21}{1,3}} \quad , \quad \omega = 6,167 \text{ rad }/\text{s} \]

\[\vec{V}_G = 6,167 \vec{k} \wedge (0,19445 \vec{i} + 0,2475 \vec{j}) \quad , \quad \vec{V}_G = -1,5263 \vec{i} + 1,1992 \vec{j} \]

\[\vec{a}_G = 17,609 \vec{k} \wedge (0,19445 \vec{i} + 0,2475 \vec{j}) + 6,167 \vec{k} \wedge (-1,5263 \vec{i} + 1,1992 \vec{j}) \]

\[\vec{a}_G = -11,754 \vec{i} - 5,989 \vec{j} \]

\[\sum F_x = m a_{gx} \Rightarrow R_{Ax} = 12(-11,754) \quad , \quad R_{Ax} = -141,05 N. \]

\[\sum F_y = m a_{gy} \Rightarrow R_{Ay} + 12g = 12(-5,989) \quad , \quad R_{Ay} = -189,59 N. \quad , \quad R_d = 236,3 N. \]

Soru 1: Şekilde gösterildiği anda AB çubuğunun A ucu sola doğru $V_A = 0.75m/s$ hızı ve $a_x = 0.54m/s^2$ ivmesi ile hareket ediyor. Şekilde gösterildiği anda

a) D diskinin açısal hızını
b) AB çubuğunun açısal ivmesini
c) AB çubuğunun orta noktası G nin ivmesini hesaplayınız.

cözüm:

\[
 V_b = R \omega_D \Rightarrow \omega_D = \frac{V_b}{R}, \quad \omega_D = \frac{0.75 \sqrt{3}}{0.4}, \quad \omega_D = 1.875 \sqrt{3} \text{ rad/s} \quad \left(\omega_D = 3.2476 \text{ rad/s} \right)
\]

\[
 \ddot{a}_b = \ddot{a}_A + \ddot{a}_{BA}, \quad \ddot{a}_A = \alpha_A \ddot{k} \wedge DB + \omega_D \ddot{k} \wedge \ddot{V}_b, \quad \ddot{V}_b = 0.75 \sqrt{3} \ddot{j}
\]

\[
 \ddot{a}_b = \alpha_A \ddot{k} \wedge 0.4 \dddot{i} + 1.875 \sqrt{3} \dddot{k} \wedge 0.75 \sqrt{3} \dddot{j}, \quad \dddot{a}_b = -4.21875 \dddot{i} + 0.4 \alpha_D \dddot{j}
\]

\[
 \ddot{a}_A = -0.54 \dddot{i}, \quad \dddot{a}_{BA} = \alpha_{AB} \dddot{k} \wedge AB - \omega_{AB} \dddot{k} \wedge \ddot{V}_{BA}, \quad \ddot{V}_{BA} = \dddot{V}_b - \dddot{V}_a, \quad \dddot{V}_a = -0.75 \dddot{i}
\]

\[
 \ddot{V}_{BA} = 0.75 \dddot{i} + 0.75 \sqrt{3} \dddot{j}, \quad \dddot{A}B = -0.5 \sqrt{3} \dddot{i} + 0.5 \dddot{j}
\]

\[
 \dddot{A}_B/A = \alpha_{AB} \dddot{k} \wedge (-0.5 \sqrt{3} \dddot{i} + 0.5 \dddot{j}) - 1.5 \dddot{k} \wedge (0.75 \dddot{i} + 0.75 \sqrt{3} \dddot{j})
\]

\[
 \dddot{A}_B/A = (-0.5 \alpha_{AB} + 1.125 \sqrt{3}) \dddot{i} + (-0.5 \sqrt{3} \alpha_{AB} - 1.125) \dddot{j}
\]

\[
 \ddot{a}_b = -4.21875 \dddot{i} + 0.4 \alpha_D \dddot{j} = -0.54 \dddot{i} + [(0.5 \alpha_{AB} + 1.125 \sqrt{3}) \dddot{i} + (-0.5 \sqrt{3} \alpha_{AB} - 1.125) \dddot{j}]
\]

\[
 -4.21875 \dddot{i} + 0.4 \alpha_D \dddot{j} = (-0.5 \alpha_{AB} + 1.125 \sqrt{3} - 0.54) \dddot{i} + (-0.5 \sqrt{3} \alpha_{AB} - 1.125) \dddot{j}
\]
\[
\begin{align*}
-0.5\alpha_{AB} + 1.125\sqrt{3} - 0.54 &= -4.21875 \\
-0.5\sqrt{3}\alpha_{AB} - 1.125 &= 0.4\alpha_D \\
\end{align*}
\Rightarrow \begin{cases}
\alpha_{AB} = 11.255 \text{ rad} / s^2 \\
\alpha_D = -27.18 \text{ rad} / s^2
\end{cases}
\]

c) \quad \ddot{a}_G = \ddot{a}_A + \ddot{a}_{G/A}, \quad \ddot{a}_A = -0.54\dddot{t}, \quad \ddot{a}_{G/A} = \alpha_{AB}\dddot{t} + \omega_{AB}\dddot{k} + \dddot{V}_{G/A}
\]
\[
\dddot{V}_{G/A} = \omega_{AB}\dddot{k} + \dddot{AG}, \quad \dddot{AG} = \frac{1}{2} \dddot{AB}, \quad \dddot{AG} = \frac{1}{2}(-0.5\sqrt{3}\dddot{t} + 0.5\dddot{j})
\]
\[
\dddot{AG} = -0.25\sqrt{3}\dddot{t} + 0.25\dddot{j}, \quad \dddot{V}_{G/A} = -1.5\dddot{k} + (-0.25\sqrt{3}\dddot{t} + 0.25\dddot{j})
\]
\[
\dddot{V}_{G/A} = 0.375\dddot{t} + 0.375\sqrt{3}\dddot{j}
\]
\[
\dddot{a}_{G/A} = 11.255\dddot{k} + (-0.25\sqrt{3}\dddot{t} + 0.25\dddot{j}) - 1.5\dddot{k} + (0.375\dddot{t} + 0.375\sqrt{3}\dddot{j})
\]
\[
\dddot{a}_{G/A} = -1.8395\dddot{t} - 5.43606\dddot{j}, \quad \dddot{a}_G = -2.3795\dddot{t} - 5.4361\dddot{j}
\]
\[
\dddot{a}_G = 5.934 \text{ cm} / s^2
\]
Soru 1A: Şekilde gösterildiği anda AB çubuğunun A ucu sola doğru \(V_A = 0.75m/s \) hızı ve \(a_A = 0.54m/s^2 \) ivmesi ile hareket ediyor. Şekilde gösterildiği anda

a) AB çubuğunun açısal ivmesini
b) AB çubuğunun orta noktasi G nin ivmesini hesaplayınız.

Çözüm:

\[V_A = \frac{IA \omega_{AB}}{IA} , \quad \omega_{AB} = \frac{V_A}{IA} = \overline{AB} \sin 30^0 = 0.75 \text{m} , \quad \omega_{AB} = \frac{0.75}{100} \]

\[\omega_{AB} = 1.5 \text{rad/s} , \quad V_B = \frac{IB \omega_{AB}}{IB} = \overline{AB} \cos 30^0 = 0.5 \text{m} , \quad V_B = 0.75\sqrt{3} \text{m/s} \]

\[V_B = R \omega_D \Rightarrow \omega_D = \frac{V_B}{R} , \quad \omega_D = \frac{0.75\sqrt{3}}{0.4} , \quad \omega_D = 1.875\sqrt{3} \text{rad/s} \]

\[\omega_D = 3.2476 \text{rad/s} \]

b) \[\ddot{a}_B = \ddot{a}_A + \ddot{a}_{BA} , \quad \ddot{a}_B = \alpha_D \dddot{e} + \omega_D \dot{e} \times \dddot{e} + \dddot{e} \times \dot{e} \times \dddot{e} + \dddot{e} \times \dddot{e} \times \dddot{e} \]

\[\ddot{a}_B = \alpha_D \dddot{e} + 0.4 \dot{e} + 1.875\sqrt{3} \dddot{e} + 0.75\sqrt{3} \dddot{e} + \dddot{e} \times \dot{e} \times \dddot{e} + \dddot{e} \times \dddot{e} \times \dddot{e} \]

\[\ddot{a}_A = -0.54 \dddot{e} , \quad \ddot{a}_{BA} = \alpha_{AB} \dddot{e} + \dddot{e} \times \dddot{e} \times \dddot{e} + \dddot{e} \times \dddot{e} \times \dddot{e} \]

\[\dddot{e} = 0.75 \dddot{e} + 0.75\sqrt{3} \dddot{e} + \dddot{e} \times \dddot{e} \times \dddot{e} \]

\[\dddot{e} = -0.5\sqrt{3} \dddot{e} + 0.5 \dddot{e} \]

\[\ddot{a}_{BA} = \alpha_{AB} \dddot{e} + (-0.5\sqrt{3} + 0.5) \dddot{e} - 1.5 \dddot{e} + (0.75 \dddot{e} + 0.75\sqrt{3} \dddot{e}) \]

\[\ddot{a}_{BA} = (-0.5\alpha_{AB} + 1.125\sqrt{3}) \dddot{e} + (-0.5\sqrt{3} \alpha_{AB} - 1.125) \dddot{e} \]

\[\ddot{a}_B = -4.21875 \dddot{e} + 0.4 \dddot{e} \ddot{e} - 0.54 \dddot{e} + [(-0.5\alpha_{AB} + 1.125\sqrt{3}) \dddot{e} + (-0.5\sqrt{3} \alpha_{AB} - 1.125) \dddot{e}] \]

\[-4.21875 \dddot{e} + 0.4 \alpha_D \dddot{e} = (-0.5\alpha_{AB} + 1.125\sqrt{3} - 0.54) \dddot{e} + (-0.5\sqrt{3} \alpha_{AB} - 1.125) \dddot{e} \]
\[-0.5 \alpha_{AB} + 1.125 \sqrt{3} - 0.54 = -4.21875 \]
\[-0.5 \sqrt{3} \alpha_{AB} - 1.125 = 0.4 \alpha_D \]
\[
\begin{align*}
\{ & \Rightarrow \alpha_{D} = 11.255 \text{rad/s}^2 \\
& \alpha_D = -27.18 \text{rad/s}^2
\end{align*}
\]

\[c) \quad \bar{a}_G = \bar{a}_A + \bar{a}_{G/A} \quad , \quad \bar{a}_A = -0.54i \quad , \quad \bar{a}_{G/A} = \alpha_{AB} \bar{k} \wedge \overline{AG} - \omega_{AB} \bar{k} \wedge \bar{V}_{G/A}\]
\[\bar{V}_{G/A} = -\omega_{AB} \bar{k} \wedge \overline{AG} \quad , \quad \overline{AG} = \frac{1}{2} \overline{AB} \quad , \quad \overline{AG} = \frac{1}{2} (-0.5 \sqrt{3} \bar{i} + 0.5 \bar{j})\]
\[\bar{A}G = -0.25 \sqrt{3} \bar{i} + 0.25 \bar{j} \quad , \quad \bar{V}_{G/A} = -1.5 \bar{k} \wedge (-0.25 \sqrt{3} \bar{i} + 0.25 \bar{j})\]
\[\bar{V}_{G/A} = 0.375 \bar{i} + 0.375 \sqrt{3} \bar{j}\]
\[\bar{a}_{G/A} = 11.255 \bar{k} \wedge (-0.25 \sqrt{3} \bar{i} + 0.25 \bar{j}) - 1.5 \bar{k} \wedge (0.375 \bar{i} + 0.375 \sqrt{3} \bar{j})\]
\[\bar{a}_{G/A} = -1.8395 \bar{i} - 5.43606 \bar{j} \quad , \quad \bar{a}_G = -2.3795 \bar{i} - 5.4361 \bar{j}\]
\[, \quad a_G = 5,934 \text{ cm/s}^2\]
Soru 2: Şekilde otomatik kaynak makinesi gösterilmektedir. İki kaynak ucu G ve Hnin hareketi D hidrolik silindiri ve BC çubuğu ile kontrol edilmektedir. Silindir düzey düzlemdeki bir plakaya tesbit edilmiştir. Bu plaka Şekilde gösterildiği anda A etrafında pozitif yönde $\omega = 1,6$ rad/s sabit açısal hız ile dönüyor. Aynı anda kaynak gurubunun EF uzunluğu 300mm/s sabit hız ile artmaktadır.

a) H ucunun hızını b) H ucunun ivmesini hesaplayınız.

Çözüm:

a)
\[
\vec{V}_H = \vec{V}_{baş} + \vec{V}_{sür} , \quad \vec{V}_{baş} = \vec{V}_{baş,i} , \quad \vec{V}_{baş} = 300\hat{i} , \quad \vec{V}_{sür} = \omega \vec{k} \wedge \vec{AH} \\
\vec{AH} = 600\hat{i} , \quad \vec{V}_{sür} = 1,6\vec{k} \wedge 600\hat{i} , \quad \vec{V}_{sür} = 960\hat{j} , \quad \vec{V}_H = 300\hat{i} + 960\hat{j} \\
V_H = 1005,8 \text{ mm/s}
\]

b)
\[
\vec{a}_H = \vec{a}_{baş} + \vec{a}_{sür} + \vec{a}_{cor} , \quad \vec{a}_{baş} = 0 \quad (\vec{V}_{baş} \text{ sabit ve bağıl hareket doğrusal olduğundan}) \\
\vec{a}_{sür} = \alpha \vec{k} \wedge \vec{AH} + \omega \vec{k} \wedge \vec{V}_{sür} , \quad \alpha = 0 \quad (\omega \text{ sabit olduğundan}) \\
\vec{a}_{sür} = 1,6\vec{k} \wedge 960\hat{j} , \quad \vec{a}_{sür} = -1536\hat{i} \\
\vec{a}_{cor} = 2\omega \vec{k} \wedge \vec{V}_{baş} , \quad \vec{a}_{cor} = 3,2\vec{k} \wedge 300\hat{i} , \quad \vec{a}_{cor} = 960\hat{j} \\
\vec{a}_H = -1536\hat{i} + 960\hat{j} \quad , \quad a_H = 1811,3 \text{ mm/s}^2
\]
Soru 3: 9kg Kütüle diktörtgen şeklindeki homojen malzemeden yapılan aşağıdaki cisim ilk hızsız harekete bırakılıyor. Cismin yatayla θ açısı yaptığı anda A mesnetindeki tepki kuvvetini hesaplayınız.

Çözüm:

\[\sum \vec{F} = m \vec{a}_G \]
\[\vec{a}_G = \alpha \vec{k} \wedge \vec{AG} + \omega \vec{k} \wedge \vec{\dot{V}}_G, \quad \vec{\dot{V}}_G = \omega \vec{k} \wedge \vec{\dot{AG}} \]
\[\vec{AG} = \sqrt{0,2^2 + 0,05^2}, \quad \vec{AG} = 0,20616 \, m, \quad \vec{AG}_2 = \vec{AG} \cos(\theta + \phi) \hat{i} + \vec{AG} \sin(\theta + \phi) \hat{j} \]
\[\varphi = \arctan \frac{1/8}{1/2}, \quad \varphi = 14,04^\circ, \quad \vec{AG}_2 = 0,20616 \cos 44,04^\circ \hat{i} + 0,20616 \sin 44,04^\circ \hat{j} \]
\[\vec{AG}_2 = 0,1482 \hat{i} + 0,1433 \hat{j}, \quad \sum M_A = I_A \alpha \Rightarrow \alpha = \frac{\sum M_A}{I_A} \]
\[\sum M_A = mg \vec{AG} \cos(\theta + \phi), \quad \sum M_A = 9 \times 9,81 \times 0,20616 \times \cos 44,04^\circ, \quad \sum M_A = 13,085 \, Nm. \]
\[I_A = \frac{1}{3} m l^2 + \frac{1}{3} m \left(\frac{l}{4} \right)^2, \quad I_A = \frac{1}{3} m l^2 \left(1 + \frac{1}{16} \right), \quad I_A = \frac{17}{48} \times 9 \times 0,4^2, \quad I_A = 0,51 \, kg \, m^2 \]
\[\alpha = \frac{13,085}{0,51}, \quad \alpha = 25,66 \, rad / s^2, \quad \tau_1 = \tau_2, \quad \tau_1 = \tau_2 = mgh, \quad h = h_2 - h_1 \]
\[h_2 = \vec{AG} \sin(\theta + \phi), \quad h_2 = 0,20616 \times \sin 44,04^\circ, \quad h_2 = 0,143314 \, m, \quad h_1 = \vec{AG} \sin(\varphi) \]
\[h_1 = 0,20616 \times \sin 14,04^\circ, \quad h_1 = 0,050014 \, m, \quad h = 0,0933 \, m, \quad \tau_1 = 9 \times 9,81 \times 0,0933 \]
\[\tau_1 = 8,237 \, Nm, \quad T_1 = T_2 = \frac{1}{2} I_A \omega^2, \quad T_2 = \frac{1}{2} 0,51 \omega^2 = 8,237 \Rightarrow \omega = \sqrt{\frac{2 \times 8,237}{0,51}} \]
\[\omega = 5,68 \, rad / s, \quad \vec{\dot{V}}_G = 5,68 \, \hat{k} \wedge (0,1482 \hat{i} + 0,1433 \hat{j}), \quad \vec{\dot{V}}_G = -0,814 \hat{i} + 0,842 \hat{j} \]
\[\vec{a}_G = 25,66 \, \hat{k} \wedge (0,1482 \hat{i} + 0,1433 \hat{j}) + 5,68 \, \hat{k} \wedge (-0,814 \hat{i} + 0,842 \hat{j}), \quad \vec{a}_G = -8,46 \hat{i} - 0,82 \hat{j} \]
\[\sum F_x = m a_{gx} \Rightarrow \vec{R}_{ax} = 9 \times (8,46), \quad \vec{R}_{ax} = -76,14 \, N. \]
\[\sum F_y = m a_{gy} \Rightarrow \vec{R}_{ay} + mg = m \times (-0,82), \quad \vec{R}_{ay} = -9 \times (8,91 + 0,82), \quad \vec{R}_{ay} = -95,67 \, N. \]
\[\vec{R}_a = \sqrt{R_{ax}^2 + R_{ay}^2}, \quad \vec{R}_a = \sqrt{(-76,14)^2 + (-95,67)^2}, \quad \vec{R}_a = 121,9 \, N. \]
Soru 1) Şekildeki mekanizmada B bileği yukarı doğru 1,5 m/s sabit hız ile hareket ediyor. $	heta = 50^\circ$ için:

a) AB çubuğunun açısal hızını ve AB çubuğun üç noktası A nın hızını
b) AB çubuğun açısal ivmesini ve AB çubuğun üç noktası A nın ivmesini bulunuz.

Çözüm:

$$V_B = \omega_{AB} \overrightarrow{AB} \quad \Rightarrow \quad \omega_{AB} = \frac{V_B}{IB}$$

$$\overrightarrow{IA} = 0,851m \quad \omega_{AB} = \frac{1,5}{1,279}, \quad [\omega_{AB} = 1,173 \text{ rad/s}]$$

$$V_A = \omega_{AB} \overrightarrow{IA} \quad , \quad V_A = 1,173 \times 0,851 \quad , \quad [V_A = 0,998 \text{ m/s}]$$

b) $\ddot{a}_A = \ddot{a}_B + \ddot{a}_{A/B}$, $\ddot{a}_B = \ddot{O}$ (B noktasının hareketi doğrusal ve hızının şiddeti sabit)

$$\ddot{a}_{A/B} = \alpha_{AB} \times BA + \ddot{\omega}_{AB} \times \overrightarrow{V}_{A/B}$$

$$\dddot{V}_A = 0,998(\cos 25^\circ \dot{i} + \sin 25^\circ \dot{j}) \quad , \quad \dddot{V}_A = 0,9045\dddot{i} + 0,4218\dddot{j} \quad , \quad \dddot{V}_B = 1,5\dddot{j}$$

$$\dddot{V}_{A/B} = 0,9045\dddot{i} - 1,0782\dddot{j} \quad , \quad \dddot{\omega}_{AB} = 1,173\dddot{k} \quad , \quad \dddot{\alpha}_{AB} = \alpha_{AB}\dddot{k}$$

$$\dddot{BA} = -1,2 \cos 40^\circ \dddot{i} - 1,2 \sin 40^\circ \dddot{j} \quad , \quad \dddot{BA} = -0,9193\dddot{i} - 0,7713\dddot{j}$$

$$\dddot{a}_{A/B} = \alpha_{AB}\dddot{k} + (-0,9193\dddot{i} - 0,7713\dddot{j}) + 1,173\dddot{k} \times (0,9045\dddot{i} - 1,0782\dddot{j})$$

$$\dddot{a}_A = (0,7713\alpha_{AB} + 1,2647)\dddot{i} + (-0,9193\alpha_{AB} + 1,061)\dddot{j}$$

$$a_A \cos 25^\circ = 0,7713\alpha_{AB} + 1,2647 \quad , \quad a_A \sin 25^\circ = -0,9193\alpha_{AB} + 1,061$$

$$\begin{align*}
0,9063a_A - 0,7713\alpha_{AB} &= 1,2647 \\
-0,9063a_A + 0,9193\alpha_{AB} &= 1,061
\end{align*}$$

$$\begin{align*}
\alpha_{AB} &= 0,3685 \text{ rad/s} \\
a_A &= 1,709 \text{ m/s}^2
\end{align*}$$
Soru 2) P pimi AE ve BD çubuğu üzerindeki kanallarda hareket edebiliyor. AE çubuğu A pimi etrafında saat akrebi yönünde \(\omega_A = 4 \text{rad/s} \) sabit açısal hız ile dönüyor. BD çubuğu ise hareketsiz duruyor. Şekilde verilen konum için a) P piminin hızını, b) P piminin ivmesini bulunuz.

![Diagram](https://via.placeholder.com/150)

Çözüm:

a) \(\vec{V}_p = \vec{V}_{bag} + \vec{V}_{sür} \), \(\vec{V}_p = V_p \hat{j} \), \(\vec{V}_{bag} = V_{bag} \vec{U}_{AE} \), \(\vec{V}_{sür} = \omega_A \wedge \vec{A} \vec{P} \)

\(\omega_A = 4k \), \(\vec{A} \vec{P} = \vec{AB} \hat{i} + B \vec{P} \hat{j} \), \(\frac{B \vec{P}}{250} = \tan 30^\circ \Rightarrow B \vec{P} = 144,338 \text{mm} \)

\(\vec{V}_{sür} = 4k \wedge (250 \hat{i} + 144,338 \hat{j}) \), \(\vec{V}_{sür} = -577,352 \hat{i} + 1000 \hat{j} \)

\(\vec{V}_p = V_p \hat{j} = (0,866 V_{bag} \hat{i} + 0,5 V_{bag} \hat{j}) + (-577,352 \hat{i} + 1000 \hat{j}) \)

\(V_{bag} = 666,688 \text{mm/s} \)

\(V_p = 1333,344 \hat{j} \)

b) \(\vec{a}_p = \vec{a}_{bag} + \vec{a}_{sür} + \vec{a}_{cor} \), \(\vec{a}_p = a_p \hat{j} \), \(\vec{a}_{bag} = a_{bag} \vec{U}_{AE} \)

\(\vec{a}_{sür} = \vec{a}_A \wedge \vec{A} \vec{P} + \omega_A \wedge \vec{V}_{sür} \), \(\vec{a}_{cor} = 2\omega_A \wedge \vec{V}_{bag} \), \(\vec{a}_{bag} = 0,866 a_{bag} \hat{i} + 0,5 a_{bag} \hat{j} \)

\(\vec{a}_{sür} = \omega_A \vec{k} \wedge (250 \hat{i} + 144,338 \hat{j}) + 4 \vec{k} \wedge (-577,352 \hat{i} + 1000 \hat{j}) \)

\(\vec{a}_{sür} = (-144,338 \omega_A - 4000) \hat{i} + (250 \omega_A - 2309,41) \hat{j} \Rightarrow \omega_A = 0 \) (\(\omega_A \) sabit olduğundan)

\(\vec{V}_{bag} = 577,352 \hat{i} + 333,344 \hat{j} \)

\(\vec{a}_{cor} = 8 \vec{k} \wedge (577,352 \hat{i} + 333,344 \hat{j}) \)

\(\vec{a}_{cor} = -2666,752 \hat{i} + 4618,816 \hat{j} \)

\(\vec{a}_p = a_p \hat{j} = (0,866 a_{bag} \hat{i} + 0,5 a_{bag} \hat{j}) + [(144,338,4000) \hat{i} + (250 \omega_A - 2309,41) \hat{j}] + (-2666,752 \hat{i} + 4618,816 \hat{j}) \)

\(a_p \hat{j} = (0,866 a_{bag} - 666,752) \hat{i} + (0,5 a_{bag} - 2309,41 + 4618,816) \hat{j} \)

\(a_{bag} = 7698,3 \text{mm/s}^2 \)

\(a_p = 6158,6 \text{mm/s}^2 \)
Soru 3) Şekildeki mekanizmada 3kg kütleyi homojen AB çubuğunun hareketi, kütleyleri ile sürtünme kuvveti ihmal edilebilen düzey doğrultuda hareket eden A ve yatay doğrultuda hareket eden B bileği yardımı ile kontrol ediliyor. $\theta = 15^\circ$ deg sistem ilk hızı hareketinden bırakıldığında göre $\theta = 60^\circ$ oldu anda
a) AB çubuğunun açısal hızını
b) AB çubuğunun açısal ivmesini bulunuz.

Çözüm:

\[
\tau_{(1)-(2)} + T_1 = T_2, \quad T_1 = 0, \quad \tau_{(1)-(2)} = mg \cdot h
\]

\[
h = \frac{1}{2}(\cos 15^\circ - \cos 60^\circ), \quad h = 0,233l, \quad \tau_{(1)-(2)} = 0,233 \cdot mg l
\]

\[
T_2 = \frac{1}{2} m V_G^2 + \frac{1}{2} I_G \omega^2, \quad V_G = \overrightarrow{IG} \omega, \quad \overrightarrow{IG} = \frac{1}{2}, \quad l = \overrightarrow{AB}, \quad V_G = \frac{1}{2} \omega
\]

\[
T_2 = \frac{1}{2} m \frac{l^2}{4} \omega^2 + \frac{1}{2} \frac{l}{12} m l^2 \omega^2, \quad T_2 = \frac{4}{24} m l^2 \omega^2
\]

\[
T_2 = \frac{1}{6} m l^2 \omega^2 = 0,233 \cdot mg l \quad \Rightarrow \quad \omega = \sqrt{\frac{6 \cdot 0,233 \cdot g}{l}}, \quad \omega = \sqrt{\frac{6 \cdot 0,233 \cdot 9,81}{0,36}}
\]

$\omega = 6,172 \text{rad/s}$
b) \[\sum M_G = I_G \alpha, \quad \sum \vec{F} = m \vec{a}_G \]

\[\begin{align*}
\vec{a}_G &= \vec{a}_b + \vec{a}_{G/B}, \quad \vec{a}_A = \vec{a}_B + \vec{a}_{A/B}, \quad \vec{a}_A = a_A \vec{j}, \quad \vec{a}_B = a_B \vec{i} \\
\vec{a}_{A/B} &= \vec{a} \wedge \vec{BA} + \vec{\omega} \wedge \vec{V}_{A/B}, \quad \vec{V}_{A/B} = \vec{V}_A - \vec{V}_B, \quad \vec{V}_A = -\omega \vec{IA} \vec{j}, \quad \vec{V}_A = -192,424 \vec{j} \\
\vec{V}_B &= \omega \vec{IB} \vec{i}, \quad \vec{V}_B = 111,096 \vec{i}, \quad \vec{V}_{A/B} = -111,096 \vec{i} - 192,424 \vec{j} \\
\vec{a}_{A/B} &= \alpha \vec{k} \wedge (-31,178 \vec{i} + 18 \vec{j}) + 6,172 \vec{k} \wedge (-111,096 \vec{i} - 192,424 \vec{j}) \\
\vec{a}_A &= (-18 \alpha + 1187,641) \vec{i} + (-31,178 \alpha - 685,68) \vec{j} \\
\vec{a}_B &= a_B \vec{i} + [(-18 \alpha + 1187,641) \vec{i} + (-31,178 \alpha - 685,68) \vec{j}] \\
-31,178 \alpha - 685,68 &= a_A \quad \Rightarrow \quad a_B = 18 \alpha - 1187,641 = 0 \\
-31,178 \alpha - 685,68 &= a_A \quad \Rightarrow \quad a_B = 18 \alpha - 1187,641 = 0 \\
\vec{a}_{G/B} &= \vec{a} \wedge \vec{BG} + \vec{\omega} \vec{k} \wedge \vec{V}_{G/B}, \quad \vec{V}_{G/B} = \vec{\omega} \vec{k} \wedge \vec{BG}, \quad \vec{BG} = \frac{\vec{BA}}{2} \\
\vec{V}_{G/B} &= -55,548 \vec{i} + 9 \vec{j}, \quad \vec{V}_{G/B} = 6,172 \vec{k} \wedge (-15,589 \vec{i} + 9 \vec{j}) \\
\vec{a}_{G/B} &= (9 \alpha + 593,84) \vec{i} + (-15,589 \alpha - 342,84) \vec{j} \\
\vec{a}_b &= (18 \alpha - 1187,641) \vec{i} + [(9 \alpha + 593,84) \vec{i} + (-15,589 \alpha - 342,84) \vec{j}] \\
\vec{a}_g &= (27 \alpha - 593,8) \vec{i} + (-15,589 \alpha - 342,84) \vec{j} \quad \Rightarrow \quad a_{gx} = (27 \alpha - 593,8) \text{cm/s}^2 \\
\vec{a}_{G/b} &= (15,589 \alpha - 342,84) \text{cm/s}^2 \quad \text{Buradaki ivmelerin birimleri} \quad \frac{m}{s^2} \text{cinsinden}
\end{align*} \]

Yazılırsa \[a_{gx} = (0,27 \alpha - 5,938) m/s^2, \quad a_{gy} = (-0,15589 \alpha - 3,4284) m/s^2 \] elde edilir.

\[\begin{align*}
\sum F_x = m a_x & \Rightarrow R_A = m(0.27 \alpha - 5.938), \quad R_A = 0.81 \alpha - 17.814 \\
\sum F_y = m a_y & \Rightarrow R_B = -m g = m(-0.15589 \alpha - 3.4284), \quad R_B = -0.4677 \alpha + 19.1448 \\
\sum M_G = I_G \alpha & \Rightarrow R_A \left(\frac{1}{2} \sin \theta - R_A \frac{1}{2} \cos \theta = \frac{1}{12} m \ell^2 \alpha \right) \\
&= (-0.4677 \alpha + 19.1448) \left(\frac{1}{2} \sin \theta - (0.81 \alpha - 17.814) \frac{1}{2} \cos \theta = \frac{1}{12} m \ell^2 \alpha \right) \\
&= (-0.4677 \alpha + 19.1448) \sqrt{3} - (0.81 \alpha - 17.814) = 0.36 \alpha
\end{align*} \]

\[\begin{align*}
1.98 \alpha &= 50,974 \quad \Rightarrow \quad \alpha = 25,744 \text{rad/s}^2 \\
R_A &= 3.04 N, \quad R_B = 7.1 N.
\end{align*} \]
MAKINE 2 G4 2002-2003 GÜZ YARIYILI DİNAMİK DERSİ 3.VİZE SORULARI VE CEVAPLARI

Soru 1) Şekildeki mekanizmada BE çubuğu saat ibreleri tersi yönünde 4 rad/s sabit açısal hız ile E pimi etrafında dönüyor. Mekanizma şekilde gösterilen konumdan geçerken

a) AD çubuğunun A noktasının hızını b) D bileziğinin ivmesini bulunuz.

Çözüm:

a) \(V_B = \omega_{BE} \overrightarrow{BE} \), \(V_B = 4 \times 192 \), \(V_B = 768 \text{ mm/s} \), \(V_B = \omega_{AD} \overrightarrow{IB} \), \(\omega_{AD} = \frac{V_B}{IB} \),

\[\overrightarrow{IB} = BD \sin 30^\circ , \quad \overrightarrow{IB} = 360 \times \frac{1}{2} \times \overrightarrow{IB} = 180 \text{ mm} , \quad \omega_{AD} = \frac{768}{180} \text{ , } \quad \omega_{AD} = 4,267 \text{ rad/s} \]

\[V_A = \overrightarrow{IA} \omega_{AD} , \quad \overrightarrow{IA} = \sqrt{AB^2 + IB^2 - 2 \times AB \times IB \cos 120^\circ} \], \(\overrightarrow{IA} = 364,966 \text{ mm} \)

\[V_A = 364,966 \times 4,267 , \quad \overrightarrow{V_A} = 1557,3 \text{ mm/s} \]

b) \(\ddot{a}_B = \ddot{a}_B + \ddot{a}_{D/B} \), \(\ddot{a}_B = \alpha_{BE} \overset{k}{k} \wedge EB - \omega_{BE} \overset{k}{k} \wedge \vec{V}_B \), \(\alpha_{BE} = 0 \) (\(\omega_{BE} \) sabit olduğundan)

\[\vec{V}_B = 768 \overset{i}{i} \text{ , } \quad \ddot{a}_B = -4 \overset{k}{k} \wedge 768 \overset{i}{i} \text{ , } \quad \ddot{a}_B = -3072 \overset{j}{j} \text{ , } \quad \ddot{a}_D = a_D \overset{j}{j} \]

\[\ddot{a}_{D/B} = \alpha_{A/D} \overset{k}{k} \wedge BD + \omega_{AD} \overset{k}{k} \wedge \vec{V}_{D/B} , \quad BD = 311,77 \overset{i}{i} + 180 \overset{j}{j} \text{ , } \quad \vec{V}_{D/B} = \vec{V}_D - \vec{V}_B \]

\[V_D = \omega_{AD} \overrightarrow{ID} , \quad \overrightarrow{ID} = BD \cos 30^\circ , \quad \overrightarrow{ID} = 360 \times \frac{\sqrt{3}}{2} , \quad \overrightarrow{ID} = 311,769 \text{ mm} \]

\[V_D = 4,267 \times 311,769 , \quad V_D = 1330,32 \text{ mm/s} , \quad V_D = 1330,32 \overset{j}{j} \text{ , } \quad \vec{V}_{D/B} = -768 \overset{i}{i} + 1330,32 \overset{j}{j} \]

\[\ddot{a}_{D/B} = \alpha_{A/D} \overset{k}{k} \wedge (311,77 \overset{i}{i} + 180 \overset{j}{j}) + 4,267 \overset{k}{k} \wedge (-768 \overset{i}{i} + 1330,32 \overset{j}{j}) \]

\[\ddot{a}_{D/B} = (-180 \alpha_{A/D} - 5676,48) \overset{i}{i} + (311,77 \alpha_{A/D} - 3277,056) \overset{j}{j} \]

\[\ddot{a}_D = a_D \overset{j}{j} = -3072 \overset{j}{j} + (-180 \alpha_{A/D} - 5676,48) \overset{i}{i} + (311,77 \alpha_{A/D} - 3277,056) \overset{j}{j} \]

\[a_D = a_D \overset{j}{j} = (-180 \alpha_{A/D} - 5676,48) \overset{i}{i} + (311,77 \alpha_{A/D} - 6349,056) \overset{j}{j} \]

\[-180 \alpha_{A/D} - 5676,48 = 0 \]

\[311,77 \alpha_{A/D} - 6349,056 = a_D \]

\[\Rightarrow \alpha_{AD} = -31,536 \text{ rad/s}^2 \], \(a_D = -16181,3 \overset{j}{j} \)
Soru 2) Şekilde gösterilen Sabit disk mekanizmasında D diski saat ibreleri yönünde \(\omega_D = 10 \text{rad/s} \) sabit açısal hız ile D pimi etrafında dönmektedir. Aynı anda okuyucu elemanı bulunduran parça A etrafında saat ibreleri yönünde \(\omega_A = 0,5 \text{rad/s} \) sabit açısal hız ile dönmektedir. P okuyucu elemanının diske göre bağlı hızını ve bağlı ivmesini bulunuz.

Çözüm:

\[
\bar{V}_p = \bar{V}_{bağ} + \bar{V}_{sür} \quad \Rightarrow \quad \bar{V}_{bağ} = \bar{V}_p - \bar{V}_{sür}
\]

\[
\bar{V}_p = \bar{\omega}_D \wedge \bar{A}P \quad \bar{\omega}_D = -0,5 \bar{k} \\
\bar{A}P = -7 \bar{i} \quad \bar{V}_p = -0,5 \bar{k} \wedge (-7 \bar{i})
\]

\[
\bar{V}_p = 3,5 \bar{j} \quad \bar{V}_{sür} = \bar{\omega}_D \wedge \bar{D}P \\
\bar{\omega}_D = -10 \bar{k} \quad \bar{D}P = 2 \bar{i}
\]

\[
\bar{V}_{bağ} = 3,5 \bar{j} + 20 \bar{j} \quad \bar{V}_{bağ} = 23,5 \bar{j}
\]

\[
\bar{a}_p = \bar{a}_{bağ} + \bar{a}_{sür} + \bar{a}_{cor} \quad \Rightarrow \quad \bar{a}_{bağ} = \bar{a}_p - \bar{a}_{sür} - \bar{a}_{cor}
\]

\[
\bar{a}_p = \bar{\omega}_A \wedge \bar{A}P + \bar{\omega}_A \wedge \bar{V}_p \\
\bar{\omega}_A = \bar{\omega} \quad (\omega_A \text{ sabit olduğundan})
\]

\[
\bar{a}_p = -0,5 \bar{k} \wedge 3,5 \bar{j} \quad \bar{a}_p = 1,75 \bar{i}
\]

\[
\bar{a}_{sür} = \bar{\omega}_D \wedge \bar{D}P + \bar{\omega}_D \wedge \bar{V}_{sür} \\
\bar{\omega}_D = 0 \quad (\omega_D \text{ sabit olduğundan})
\]

\[
\bar{a}_{sür} = -10 \bar{k} \wedge -20 \bar{j} \quad \bar{a}_{sür} = -200 \bar{i}
\]

\[
\bar{a}_{cor} = 2 \bar{\omega}_D \wedge \bar{V}_{bağ} \\
\bar{\omega}_D = -20 \bar{k} \wedge 23,5 \bar{j} \quad \bar{a}_{cor} = 470 \bar{i}
\]

\[
\bar{a}_{bağ} = 1,75 \bar{i} + 200 \bar{i} - 470 \bar{i} \quad \bar{a}_{bağ} = -268,25 \bar{i}
\]
Soru 3) Aşağıdaki mekanizmada gösterilen homojen çubuklardan AB çubuğu 3kg ve BC çubuğu 8kg kütlelidir. C bileşinin kütesi ise 4kg dir. Sistem ilk hızız şekilindeki konumdan harekete bırakırsa AB çubuğunun 90° döndüken sonraki açısal hızını bulunuz.

Çözüm:

\[\tau_{(1)\rightarrow(2)} + T_1 = T_2 \quad , \quad T_1 = 0 \quad (\text{ilk hizlar ve açısal hizlar sıfır olduğundan}) \]

\[\tau_{(1)\rightarrow(2)} = m_{AB} g h_1 + m_{BC} g h_2 + m_C g h_3 \]
\[h_1 = \frac{0.15}{2} \quad , \quad h_1 = 0.075 \ m \quad , \quad h_2 = (0.15 + \frac{0.39}{2}) - \frac{0.36}{2} \quad , \quad h_2 = 0.165 \ m \]
\[h_3 = 0.15 \ m \]

\[\tau_{(1)\rightarrow(2)} = (3 \times 0.075 + 8 \times 0.165 + 4 \times 0.15) g \quad , \quad \tau_{(1)\rightarrow(2)} = 2.145 \ g \]

\[T_2 = \frac{1}{2} I_A \omega_{AB}^2 + \frac{1}{2} m_{BC} V_G^2 + \frac{1}{2} I_G \omega_{BC}^2 + \frac{1}{2} m_C V_C^2 \]

AB çubuğu 90° döndüğünde C noktası Ani dönme merkezi olarak olacağını bu noktanın hızı sıfır olur.

\[V_C = 0 \quad , \quad V_B = \omega_{AB} \overrightarrow{AB} \quad , \quad V_B = \omega_{BC} \overrightarrow{BC} \Rightarrow 15 \omega_{AB} = 39 \omega_{BC} \Rightarrow \omega_{BC} = \frac{5}{13} \omega_{AB} \]

\[V_G = \omega_{BC} \overrightarrow{IG} \quad , \quad \overrightarrow{IG} = \frac{0.39}{2} \quad , \quad V_G = \frac{0.39}{2} \frac{5}{13} \omega_{AB} \quad , \quad V_G = 0.075 \omega_{AB} \]

\[T_2 = \frac{1}{2} \frac{1}{3} \omega_{AB}^2 + \frac{1}{2} \frac{8}{12} \omega_{AB}^2 + \frac{1}{2} \frac{1}{8} \omega_{AB}^2 \Rightarrow 2.145 \ g \]

\[T_2 = 0.04125 \omega_{AB}^2 = 2.145 \ g \quad \Rightarrow \omega_{AB} = \sqrt{\frac{2.145 \ g}{0.04125}} \quad , \quad \omega_{AB} = 22.59 \ rad/s \]
Soru 1) Şekilde görülen disk saat ibreleri yönünde 8 rad/s lik sabit bir açısal hızla dönmektedir. Şekilde verilen konum için a) BC ve CD çubuğunun açısal hızını b) BC ve CD çubuğunun açısal ivmesini bulunuz.

Çözüm:

a)
\[\omega_{BC} = 0 \]
\[\omega_{AB} = \omega_{A} \]
\[\omega_{A} = 8 \text{ rad/s} \]
\[\omega_{BC} = \frac{V_{C}}{CD} \]
\[V_{C} = 80 \text{ cm/s} \]
\[CD = 20 \text{ cm} \]
\[\omega_{CD} = \frac{V_{C}}{CD} = \frac{80}{20} \text{ rad/s} \]
\[\omega_{CD} = 4 \text{ rad/s} \]

b)
\[\vec{a}_{A} = \vec{a}_{B} + \vec{a}_{B/C} \]
\[\vec{a}_{B} = \vec{a}_{A} \wedge \vec{AB} + \omega_{A} \vec{k} \wedge \vec{V}_{B} \]
\[\omega_{A} = \text{sabit} \]
\[\vec{V}_{B} = -80 \vec{j} \]
\[\vec{a}_{B} = -80 \vec{k} \wedge (-80 \vec{j}) \]
\[\vec{a}_{B} = -640 \vec{i} \]
\[\vec{a}_{C} = \alpha_{BC} \vec{k} \wedge \vec{DC} + \omega_{CD} \vec{k} \wedge \vec{V}_{C} \]
\[\vec{DC} = -20 \vec{i} \]
\[\vec{V}_{C} = \vec{V}_{B} = -80 \vec{j} \]
\[\vec{V}_{C} = \vec{V}_{B} \]
\[\vec{a}_{c} = 320 \vec{i} - 20 \alpha_{CD} \vec{j} \]
\[\vec{a}_{B/C} = \alpha_{BC} \vec{k} \wedge \vec{CB} + \omega_{BC} \vec{k} \wedge \vec{V}_{BC} \]
\[\vec{V}_{BC} = \infty \]
\[\omega_{BC} = 0 \]
\[\vec{a}_{B/C} = \alpha_{BC} \vec{k} \wedge (10 \vec{i} + 24 \vec{j}) \]
\[\vec{a}_{B/C} = -24 \alpha_{BC} \vec{i} + 10 \alpha_{BC} \vec{j} \]
\[-640 \vec{i} = (320 \vec{i} - 20 \alpha_{CD} \vec{j}) + (-24 \alpha_{BC} \vec{i} + 10 \alpha_{BC} \vec{j}) \]
\[-640 \vec{i} = (320 - 24 \alpha_{BC} \vec{i}) + (10 \alpha_{BC} - 20 \alpha_{CD}) \vec{j} \]
\[320 - 24 \alpha_{BC} = -640 \]
\[10 \alpha_{BC} - 20 \alpha_{CD} = 0 \]
\[\alpha_{BC} = 40 \text{ rad/s}^2 \]
\[\alpha_{CD} = 20 \text{ rad/s}^2 \]
Soru 2) Şekildeki disk O noksası etrafında saat ibrelerinin ters yönünde sabit 300 dev/dak açısal hızı ile dönmeaktedir. r = 6cm ve R = 12cm olduğuna göre \(\theta = 60^\circ \) için BCD elemanının a) hızını b) ivmesini hesaplayınız.

Çözüm:

\(\vec{V}_p = \vec{V}_{bağı} + \vec{V}_{sür} \), \(\vec{V}_{sür} = V_{BCD} \hat{i} \)

\(\vec{V}_p = \omega_O \times \vec{OP} \), \(\omega_O = 300 \text{dev/dak} \times \frac{2\pi \text{rad}}{60} \), \(\omega_O = 10\pi \text{rad/s} \), \(\omega_O = 10\pi \hat{k} \)

\(\vec{OP} = r \cos \theta \hat{i} + r \sin \theta \hat{j} \), \(\vec{OP} = 3\hat{i} + 3\sqrt{3} \hat{j} \)

\(\vec{V}_p = \omega_O \times \vec{OP} \), \(\vec{V}_p = 10\pi \hat{k} \times (3\hat{i} + 3\sqrt{3} \hat{j}) \), \(\vec{V}_p = -30\sqrt{3}\pi \hat{i} + 30\pi \hat{j} \)

\(\vec{V}_{bağı} = \vec{V}_{bağı} \times \vec{AP} \), \(\vec{AP} = R \cos \varphi \hat{i} + R \sin \varphi \hat{j} \)

\(\vec{V}_p = -30\sqrt{3}\pi \hat{i} + 30\pi \hat{j} = -3\sqrt{3}\omega_{bağı} \hat{i} + 3\sqrt{13} \omega_{bağı} \hat{j} \)

\(3\sqrt{13} \omega_{bağı} = 30\pi \Rightarrow \omega_{bağı} = \frac{10}{\sqrt{13}} \pi \), \(\omega_{bağı} = 8,713 \text{rad/s} \)

\(V_{BCD} = -117,967 \text{cm/s} \)
b)

\[\ddot{a}_p = \ddot{a}_{bağ} + \ddot{a}_{sür} + \ddot{a}_{cor} \]

\[\ddot{a}_{cor} = \ddot{0} \quad (\omega_{sür} = 0 \ \text{olduğundan}) \quad , \quad \ddot{a}_{sür} = a_{BCD} \frac{d}{dt} \]

\[\ddot{a}_p = \ddot{a}_o \wedge \ddot{O}\vec{P} + \omega_0 \dddot{\vec{V}}_p \quad , \quad \ddot{a}_o = 0 \quad (\omega_0 = \text{sabit olduğundan}) \]

\[\ddot{a}_p = 10 \pi \dddot{\vec{k}} \wedge (-30 \sqrt{3} \pi \dddot{i} + 30 \pi \dddot{j}) \quad , \quad \ddot{a}_p = -300 \pi^2 \dddot{i} - 300 \sqrt{3} \pi^2 \dddot{j} \]

\[\ddot{a}_{bağ} = \ddot{a}_{bağ} \wedge \dddot{AP} + \dddot{\vec{V}}_{bağ} \]

\[\ddot{a}_{bağ} = \alpha_{bağ} \dddot{\vec{k}} \wedge (3 \sqrt{13} \dddot{i} + 3 \sqrt{3} \dddot{j}) + \frac{10}{\sqrt{13}} \pi \dddot{k} \wedge (-45,275 \dddot{i} + 94,248 \dddot{j}) \]

\[\ddot{a}_{bağ} = (-3 \sqrt{3} \alpha_{bağ} - 821,203) \dddot{i} + (3 \sqrt{13} \alpha_{bağ} - 394,49) \dddot{j} \]

\[\ddot{a}_p = -300 \pi^2 \dddot{i} - 300 \sqrt{3} \pi^2 \dddot{j} = (-3 \sqrt{3} \alpha_{bağ} - 821,203 + a_{BCD}) \dddot{i} + (3 \sqrt{13} \alpha_{bağ} - 394,49) \dddot{j} \]

\[-3 \sqrt{3} \alpha_{bağ} - 821,203 + a_{BCD} = -300 \pi^2 \]

\[3 \sqrt{13} \alpha_{bağ} - 394,49 = -300 \sqrt{3} \pi^2 \]

\[\Rightarrow \alpha_{bağ} = -437,65 \ \text{rad} / s^2, \quad a_{BCD} = 134,42 \ cm / s^2 \]
Soru 3) 9kg kütleli homojen AB çubuğu A ve B deki pimler ile iki ayrı homojen diske tutturulmuştur. Disklerin birinin kütesi 6kg'dir. Sistem \(\theta = 60^0 \) iken ilk hızı sız kalmış hareketi bırakırsa, \(\theta = 180^0 \) olduğunda disklerin açısal hızını bulunuz.

Çözüm :

iş ve enerji ilkesi \(\tau_{(t-\tau)} + T_1 = T_2 \)

\(T_1 = 0 \) (ilk hızlar ve açısal hızlar sıfır olduğundan)

Burada iş yapan kuvvet sadece çubuğa etki eden ağırlık kuvvetidir.

\(\tau_{(t-\tau)} = m_c g h \), \(h = 200 + 150 \cos 60^0 \), \(h = 275mm \), \(h = 0,275 m. \)

\(\tau_{(t-\tau)} = 9 \times 9 \times 0,275 \)

\(\tau_{(t-\tau)} = 2,475 g \)

\(T = \frac{1}{2} m_c V_c^2 + 2 \left(\frac{1}{2} m_p V_p^2 + \frac{1}{2} I_c \omega^2 \right) \)

\(I_c = \frac{1}{2} m R^2 \), \(V_p = 0,2 \omega \), \(V_c = V_A = 0,15 \omega \)

\(T_2 = \frac{1}{2} 9 (0,15)^2 \omega^2 + 2 \left[\frac{1}{2} 6 (0,2) \omega^2 + \frac{1}{2} \frac{1}{2} 6 (0,2) \omega^2 \right] \)

\(T_2 = 0,46125 \omega^2 = 2,475 g \Rightarrow \omega = \sqrt{\frac{2,475 \times 9,81}{0,46125}}, \omega = 7,255 \text{ rad/s} \)
Soru 1) Şekildeki krank biyel mekanizmasında AB krank kolu saat ibreleri tersi yönünde 360 dev/dak ile dönmektedir. $\theta = 0^\circ$, b) $\theta = 90^\circ$, c) $\theta = 180^\circ$ değerlerinde BC kolunun açısal hızı ile pistonun hızını bulunuz.

Çözüm:

a) $\theta = 0^\circ$

$\omega_{BC} = 0$ (ani dönme merkezi sonsuzda olduğundan.)

$V_B = V_C$ ($\omega_{BC} = 0$ olduğundan)

$V_B = \omega_{AB} \overline{AB}$

$\omega_{AB} = 360 \frac{2\pi}{60} \text{ rad/s}$, $\omega_{AB} = 12\pi \text{ rad/s}$

$V_B = 120\pi \text{ cm/s}$, $V_C = 120\pi \text{ cm/s}$

$V_C = 377 \text{ cm/s}$

b) $\theta = 90^\circ$

$V_B = \omega_{AB} \overline{IB}$, $V_B = 120\pi \text{ cm/s}$

$V_B = \omega_{BC} \overline{IB}$, $\omega_{BC} = \frac{V_B}{\overline{IB}}$

$\overline{IB} = \sqrt{30^2 - 10^2}$, $\overline{IB} = 10\sqrt{8}$

$\omega_{BC} = \frac{120\pi}{10\sqrt{8}}$, $\omega_{BC} = 13,329 \text{ rad/s}$

$V_C = \omega_{BC} \overline{IC}$, $V_C = 13,329 \times 10$

$V_C = 133,29 \text{ cm/s}$

c) $\theta = 180^0$

$\omega_{BC} = 0$ (ani dönme merkezi sonsuzda olduğundan.)

$V_B = V_C$ ($\omega_{BC} = 0$ olduğundan)

$V_B = \omega_{AB} \overline{AB}$, $V_B = 120\pi \text{ cm/s}$

$V_C = 377 \text{ cm/s}$
Soru 2) Şekilde gösterilen yarı çember şeklindeki tüp x ekseni etrafında pozitif yönde \(\omega = 8 \text{ rad/s} \) sabit açısal hız ile dönümlmaktadır. Aynı anda tüp üzerinde bir P bileği \(\theta = (\pi / 54) t^2 \) bağıntısı ile hareket etmektedir.

\(t = 3 \) de tüp xoy düzleminde olacağını göre bu an için P bileğini

a) hızını
b) ivmesini hesaplayınız. (R=12cm.)

- **a)** \(\vec{V}_p = \vec{V}_{bag} + \vec{V}_{sür} \),
 \(\vec{V}_{bag} = -\dot{\theta} \vec{k} \times \vec{G}P \),
 \(\vec{V}_{sür} = \omega \vec{i} \times \vec{G}P \)

 \[\dot{\theta} = \frac{\pi}{27}, \quad t = 3 \text{ de } \theta = \frac{\pi}{6} \text{ rad}, \quad \dot{\theta} = \frac{\pi}{9} \text{ rad/s} \]

 \(\vec{G}P = -R \cos \theta \vec{i} + R \sin \theta \vec{j} \),
 \(\vec{G}P = -6\sqrt{3} \vec{i} + 6 \vec{j} \),
 \(\vec{V}_{bag} = -\frac{\pi}{9} \vec{k} \times (-6\sqrt{3} \vec{i} + 6 \vec{j}) \)

 \(\vec{V}_{bag} = \frac{2}{3} \pi \vec{i} + \frac{2}{3} \sqrt{3} \pi \vec{j} \),
 \(\vec{V}_{sür} = 8 \vec{i} \times (-6\sqrt{3} \vec{i} + 6 \vec{j}) \),
 \(\vec{V}_{sür} = 48 \vec{k} \)

 \[\vec{V}_p = \frac{2}{3} \pi \vec{i} + \frac{2}{3} \sqrt{3} \pi \vec{j} + 48 \vec{k}, \quad \vec{V}_p = 2,09 \vec{i} + 3,63 \vec{j} + 48 \vec{k} \]

- **b)** \(\vec{a}_p = \vec{a}_{bag} + \vec{a}_{sür} + \vec{a}_{cor} \),
 \(\vec{a}_{bag} = -\dot{\theta} \vec{k} \times \vec{G}P - \theta \vec{k} \times \vec{V}_{bag} \)

 \[\ddot{\theta} = \frac{\pi}{27}, \quad \ddot{\theta}_{bag} = -\dot{\theta} \vec{k} \times (-6\sqrt{3} \vec{i} + 6 \vec{j}) - \dot{\theta} \vec{k} \times \left(\frac{2}{3} \pi \vec{i} + \frac{2}{3} \sqrt{3} \pi \vec{j} \right) \]

 \(\ddot{\theta}_{bag} = \left(\frac{2}{9} \pi + \frac{2}{27} \sqrt{3} \pi^3 \right) \vec{i} + \left(-\frac{2}{9} \pi \sqrt{3} \pi - \frac{2}{27} \pi^3 \right) \vec{j} \)

 \(\vec{a}_{sür} = \vec{a} \times \vec{G}P + \omega \vec{i} \times \vec{V}_{sür} \quad \alpha = 0 \) (\(\omega \) sabit olduğundan)

 \(\vec{a}_{sür} = 8 \vec{i} \times 48 \vec{k}, \quad \vec{a}_{sür} = -384 \vec{j} \)

 \(\vec{a}_{cor} = 2 \vec{a} \times \vec{V}_{bag} \),
 \(\vec{a}_{cor} = 16 \vec{i} \times \left(\frac{2}{3} \pi \vec{i} + \frac{2}{3} \sqrt{3} \pi \vec{j} \right) \)

 \(\vec{a}_{cor} = \frac{32}{3} \sqrt{3} \pi \vec{k} \)

 \(\vec{a}_p = \left[\left(\frac{2}{9} \pi + \frac{2}{27} \sqrt{3} \pi^3 \right) \vec{i} + \left(-\frac{2}{9} \sqrt{3} \pi - \frac{2}{27} \pi^3 \right) \vec{j} \right] + (-384 \vec{j}) + \left(\frac{32}{3} \sqrt{3} \pi \vec{k} \right) \)

 \(\vec{a}_p = \left(\frac{2}{9} \pi + \frac{2}{27} \sqrt{3} \pi^3 \right) \vec{i} + \left(-\frac{2}{9} \sqrt{3} \pi - \frac{2}{27} \pi^3 - 384 \right) \vec{j} + \frac{32}{3} \sqrt{3} \pi \vec{k} \)

 \[\vec{a}_p = 1,964 \vec{i} - 266,14 \vec{j} + 58,04 \vec{k} \]
Soru 3) Kütleleri \(m = 10 \text{ kg} \) ve boyları \(l = 2 \text{m} \) olan iki ince çubuk şekilde görüldüğü gibi birbirine C naktasında mafsalla bağlanmış olup B naktası zemin üzerinde serbestçe kayabilmektedir. Sistem \(\theta = 60^\circ \) de ilk hızız olarak harekete bırakıyor. \(\theta = 30^\circ \) de çubukların açısal hızları ile B naktasının hızını bulunuz.

Çözüm:

\[
\tau_{(1)-(2)} + T_1 = T_2, \quad T_1 = 0 \quad \text{(ilk hız sıfır olduğundan)}, \quad \tau_{(1)-(2)} = 2mgh
\]

\[
h = h_1 - h_2, \quad h = \frac{1}{2}\sin 60^\circ - \frac{1}{2}\sin 30^\circ, \quad h = (\sin 60^\circ - \sin 30^\circ), \quad h = 0,366 \text{ m}.
\]

\[
\tau_{(1)-(2)} = 2\times 10 \times 9,81 \times 0,366, \quad \tau_{(1)-(2)} = 71,81 \text{ Nm}. \quad T_2 = \frac{1}{2} I_A \omega_{AC}^2 + \frac{1}{2} m V_{G_2}^2 + \frac{1}{2} I_{G_2} \omega_{BC}^2
\]

\[
V_{G_2} = \omega_{BC} \overline{G_2}, \quad V_C = \omega_{BC} \overline{IC} \quad \Rightarrow \quad \omega_{BC} = \frac{\overline{AC}}{\overline{IC}}, \quad \overline{IC} = \overline{IA} - \overline{AC}, \quad \overline{IA} = \frac{AB}{\cos 0}, \quad \overline{AB} = 21 \cos 0, \quad \overline{IA} = 21, \quad \overline{IA} = 4m, \quad \overline{IC} = 2m, \quad \omega_{BC} = \frac{2}{\overline{AC}} \quad \Rightarrow \quad \omega_{BC} = \omega_{AC}
\]

\[
\overline{BG}_2 = -\frac{1}{2} \cos 0 \overline{i} + \frac{1}{2} \sin 0 \overline{j}, \quad \overline{BG}_2 = -\cos 30^\circ \overline{i} + \sin 30^\circ \overline{j}, \quad \overline{BG}_2 = -\frac{\sqrt{3}}{2} \overline{i} + \frac{1}{2} \overline{j}
\]

\[
\overline{IG}_2 = \overline{IG}_2 = \frac{\sqrt{3}}{4} \overline{i} - \frac{3}{4} \overline{j}, \quad \overline{IG}_2 = \frac{3}{4} + \frac{9}{4}, \quad \overline{IG}_2 = \sqrt{3} \overline{m}, \quad V_{G_2} = \sqrt{3} \omega_{AC}
\]

\[
T_2 = \frac{1}{2} \frac{1}{3} ml^2 \omega_{AC}^2 + \frac{1}{2} m \times 3 \omega_{BC}^2 + \frac{1}{2} \frac{1}{2} ml^2 \omega_{AC}^2, \quad T_2 = \frac{40}{6} \omega_{AC}^2 + \frac{30}{2} \omega_{AC}^2 + \frac{40}{24} \omega_{AC}^2
\]

\[
T_2 = \frac{140}{6} \omega_{AC}^2 = 71,81 \quad \Rightarrow \quad \omega_{AC} = \sqrt{\frac{71,81 \times 6}{140}}, \quad \omega_{AC} = \omega_{AB} = 1,754 \text{ rad} / \text{s}, \quad V_B = \omega_{BC} \overline{IB}
\]

\[
V_B = 1,754 \times 2, \quad V_B = 3,51 \text{ rad} / \text{s}
\]
Soru 1) Şekilde görülen 3 çubuk mekanizmasında AB kolu saat ibrelerinin tersi yönünde 360 dev/dak ile dönmektedir. Sistem şekilde gösterilen konumdan geçerken C noktasının hızını ve çubukların açısal hızlarını bulunuz.

\[V_B = \overline{AB} \omega_{AB}, \quad \omega_{AB} = 360 \frac{2\pi}{60} \text{ rad/s}, \quad \omega_{AB} = 12 \pi \text{ rad/s}, \quad \omega_{AB} = 37,7 \text{ rad/s} \]

\[V_B = 37,7 \times 10 \quad , \quad V_B = 377 \text{ cm/s} \quad , \quad V_B = \overline{IB} \omega_{BC} \quad \Rightarrow \quad \omega_{BC} = \frac{V_B}{\overline{IB}} \]

\[\overline{IB} = \overline{IA} + \overline{AB} \quad , \quad \overline{IA} = 10 \text{ cm} \quad \Rightarrow \quad \overline{IB} = 20 \text{ cm} \quad , \quad \omega_{BC} = \frac{377}{20} \quad , \quad \omega_{BC} = 18,85 \text{ rad/s} \]

\[V_C = \overline{IC} \omega_{BC} \quad , \quad \overline{IC} = \overline{CD} + \overline{ID} \quad , \quad \overline{CD} = \sqrt{10^2 + 15^2} \quad , \quad \overline{CD} = 18,03 \text{ cm} \]

\[\overline{IC} = 36,06 \text{ cm} \quad , \quad V_C = 36,06 \times 18,85 \quad , \quad V_C = 679,65 \text{ cm/s} \]

\[V_C = \overline{CD} \omega_{CD} \quad \Rightarrow \quad \omega_{CD} = \frac{V_C}{\overline{CD}} \quad , \quad \omega_{CD} = \frac{679,65}{18,03} \quad , \quad \omega_{CD} = 37,7 \text{ rad/s} \]
Soru 2)
Yarıçapı \(r = 2 \, \text{cm} \) olan AB dörttebir dairesel çubu üzerinde bir P bileziği \(\theta = (\pi/16)t^2 \) bağıntısı ile hareket etmektedir. Çubuk AO eksenleri etrafında saat ibreleri tersi yönde \(\omega = 6 \, \text{rad/s} \) sabit açısal hız ile dönmektedir. \(t = 2 \) için
a) P bileziğinin hızını
b) P bileziğinin ivmesini hesaplayınız.

Çözüm:

a) \(\vec{V}_p = \vec{V}_\text{bağı} + \vec{V}_\text{sür} \)

\[
\vec{V}_\text{bağı} = \vec{0} + \hat{k} \times \overrightarrow{OP}, \quad \dot{\theta} = \frac{\pi}{8} \, t, \quad t = 2 \quad \text{de} \quad \theta = \frac{\pi}{4} \, \text{rad}, \quad \dot{\theta} = \frac{\pi}{4} \, \text{rad/s}
\]

\[
\overrightarrow{OP} = r \sin \theta \hat{i} - r \cos \theta \hat{j}, \quad \overrightarrow{OP} = 6\sqrt{2} \hat{i} - 6\sqrt{2} \hat{j}, \quad \vec{V}_\text{bağı} = \frac{\pi}{4} \hat{k} \times (6\sqrt{2} \hat{i} - 6\sqrt{2} \hat{j})
\]

\[
\vec{V}_\text{bağı} = \frac{3}{2} \sqrt{2} \pi \hat{i} - \frac{3}{2} \sqrt{2} \pi \hat{j}, \quad \vec{V}_\text{sür} = \hat{\omega}_\text{sür} \times \overrightarrow{OP}, \quad \vec{V}_\text{sür} = 6\hat{j} \times (6\sqrt{2} \hat{i} - 6\sqrt{2} \hat{j})
\]

\[
\vec{V}_\text{sür} = -36\sqrt{2} \hat{k}, \quad \vec{V}_p = \left(\frac{3}{2} \sqrt{2} \pi \hat{i} - \frac{3}{2} \sqrt{2} \pi \hat{j}\right) + (-36\sqrt{2} \hat{k})
\]

\[
\vec{V}_p = 6,66 \hat{i} - 6,66 \hat{j} - 50,91 \hat{k}
\]

b) \(\vec{a}_p = \vec{a}_\text{bağı} + \vec{a}_\text{sür} + \vec{a}_\text{cor} \)

\[
\vec{a}_\text{bağı} = \vec{0} + \hat{k} \times \vec{V}_\text{bağı}, \quad \dot{\theta} = \frac{\pi}{8}
\]

\[
\vec{a}_\text{bağı} = \frac{\pi}{8} \hat{k} \times (6\sqrt{2} \hat{i} - 6\sqrt{2} \hat{j}) + \frac{\pi}{4} \hat{k} \times \left(\frac{3}{2} \sqrt{2} \pi \hat{i} - \frac{3}{2} \sqrt{2} \pi \hat{j}\right)
\]

\[
\vec{a}_\text{bağı} = \left(\frac{3}{4} \sqrt{2} \pi + \frac{3}{8} \sqrt{2} \pi^2\right) \hat{i} + \left(\frac{3}{4} \sqrt{2} \pi + \frac{3}{8} \sqrt{2} \pi^2\right) \hat{j}
\]

\[
\vec{a}_\text{sür} = \vec{a}_\text{sür} \times \overrightarrow{AP} + \hat{\omega}_\text{sür} \times \vec{V}_\text{sür}, \quad \vec{a}_\text{sür} = \vec{0} (\hat{\omega}_\text{sür} \text{ sabit olduğundan})
\]

\[
\vec{a}_\text{sür} = 6\hat{j} \times (-36\sqrt{2} \hat{k}), \quad \vec{a}_\text{sür} = -216\sqrt{2} \hat{i}
\]

\[
\vec{a}_\text{cor} = 2\hat{\omega}_\text{sür} \times \vec{V}_\text{bağı}, \quad \vec{a}_\text{cor} = 12\hat{j} \times \left(\frac{3}{4} \sqrt{2} \pi \hat{i} - \frac{3}{2} \sqrt{2} \pi \hat{j}\right), \quad \vec{a}_\text{cor} = -18\sqrt{2} \pi \hat{k}
\]

\[
\vec{a}_p = \left(\frac{3}{4} \sqrt{2} \pi + \frac{3}{8} \sqrt{2} \pi^2\right) \hat{i} + \left(\frac{3}{4} \sqrt{2} \pi + \frac{3}{8} \sqrt{2} \pi^2\right) \hat{j} + (-216\sqrt{2} \hat{i}) + (-18\sqrt{2} \pi \hat{k})
\]

\[
\vec{a}_p = \left(\frac{3}{4} \pi + \frac{3}{8} \pi^2 - 216\sqrt{2} \hat{i} + \left(\frac{3}{4} \pi + \frac{3}{8} \pi^2\right) \sqrt{2} \hat{j} - 18\sqrt{2} \pi \hat{k}
\]

\[
\vec{a}_p = -296,9 \hat{i} + 8,57 \hat{j} - 80 \hat{k}
\]
Soru 3) Bir kenarı 30 cm ve ağırlığı 100N olan homojen bir kare levha A ve B noktalardan asılmıştır. B noktası serbest bırakıldığında AC köşegeni düzey konuma geldiğinde levhanın:

a) açısal hızını
b) A noktasındaki tepki kuvvetini bulunuz.

Çözüm:

a) \(\tau_{(1)\rightarrow(2)} + T_1 = T_2 \)

\[
T_1 = 0 \quad , \quad \tau_{(1)\rightarrow(2)} = mg h \quad , \quad h = \overrightarrow{AG} - \overrightarrow{AG} \cos \varphi \quad , \quad \overrightarrow{AG} = \frac{\overrightarrow{AC}}{2} \quad , \quad \overrightarrow{AC} = 30\sqrt{2}
\]

\[
\overrightarrow{AG} = 15\sqrt{2} \quad , \quad \varphi = 45^{\circ} \quad , \quad h = 15\sqrt{2} (1 - \frac{\sqrt{2}}{2}) \quad , \quad h = 6,213 cm \quad , \quad h = 0,06213m
\]

\[
T_2 = \frac{1}{2} I_A \omega^2 \quad , \quad I_A = \frac{1}{3} m (0,3)^2 + \frac{1}{3} m (0,3)^2 \quad , \quad I_A = \frac{2}{3} m (0,3)^2
\]

\[
T_2 = 0,03 m \omega^2 = 0,06213 mg \quad \Rightarrow \quad \omega = \sqrt{\frac{0,06213*9,81}{0,03}} \quad , \quad \omega = 4,51 rad / s
\]

b) \[\sum \vec{F} = m \vec{a}_G \quad \Rightarrow \quad \sum F_x = ma_{gx} \quad , \quad \sum F_y = ma_{gy} \]

\[
a_{gx} = \overrightarrow{AG} \alpha , \quad \sum M_A = I_A \alpha \quad , \quad \sum M_A = 0 \quad \Rightarrow \quad \alpha = 0 , \quad a_{gx} = 0
\]

\[
\sum F_x = ma_{gx} \quad \Rightarrow \quad R_{Ax} = 0
\]

\[
a_{gy} = \overrightarrow{AG} \omega^2 , \quad a_{gy} = 0,15 \sqrt{2} (4,51)^2 \quad , \quad a_{gy} = 4,31 m / s^2
\]

\[
\sum F_y = ma_{gy} \quad \Rightarrow \quad R_{Ay} - mg = m * 4,31 \quad \Rightarrow \quad R_{Ay} = m (4,31 + g) \quad , \quad m = \frac{100}{g}
\]

\[
R_{Ay} = \frac{100}{g} (4,31 + g) \quad , \quad R_{Ay} = 143,9 N
\]
A ve B de sabit mafsal ile tesbit edilen diskler C ve D noktalarından CD çubuğu mafsallanmıştır. A da mafsalı disk A etrafında saat ibreleri tersi yönünde 720 dev/dak ile dönmektedir. Şekilde verilen konumda için:
a) CD çubğunun açısal hızını
b) B de mafsalı olan diskin açısal hızını bulunuz.

\[r_1 = 10 \text{ cm.}, \quad r_2 = 18 \text{ cm.}, \quad d = 52 \text{ cm.}, \quad \theta = 50^\circ \]

Çözüm:

\[\omega_A = \frac{2\pi \times 720}{60} \text{ rad/s} , \quad \omega_A = 24 \pi \text{ rad/s} \]

\[V_C = 240 \pi \text{ cm/s} , \quad V_C = \omega_{CD} \overline{IC} \Rightarrow \omega_{CD} = \frac{V_C}{\overline{IC}} \]

\[\overline{IC} = \overline{IA} + r_1 , \quad \overline{IA} = d \cdot \tan \theta , \quad \overline{IA} = 52 \cdot \tan 50^\circ , \quad \overline{IA} = 61,971 \text{ cm.}, \quad \overline{IC} = 71,971 \text{ cm.} \]

\[\omega_{CD} = \frac{240\pi}{71,971}, \quad [\omega_{CD} = 10,476 \text{ rad/s}] \]

b) \[V_D = \omega_{CD} \overline{ID} , \quad \overline{ID} = \overline{IB} - r_2 , \quad \overline{IB} = \frac{d}{\cos \theta} , \quad \overline{IB} = \frac{52}{\cos 50^\circ} , \quad \overline{IB} = 80,898 \text{ cm.} \]

\[\overline{ID} = 62,898 \text{ cm.} , \quad V_D = 10,476 \times 62,898 , \quad V_D = 658,92 \text{ cm/s} \]

\[V_D = r_2 \omega_B , \quad \omega_B = \frac{V_D}{r_2} , \quad \omega_B = \frac{658,92}{18} , \quad [\omega_B = 36,61 \text{ rad/s}] \]
Soru 2) Şekilde gösterilen iki çubuktan oluşan rijid cisim y eksenine etrafında dönenken bir p bileziği x yatay konumda dönen kol üzerinde hareket ediyor. Verilen konum ve değerler için P bileziğinin a) hızını b) ivmesini bulunuz.

Çözüm:

a) \[\vec{v}_p = \vec{v}_{bağ} + \vec{v}_{sür}. \]
\[\vec{v}_{bağ} = 10\hat{i}, \quad \vec{v}_{sür} = \vec{o} \wedge \overrightarrow{OP}, \quad \vec{o} = 10\hat{j}, \quad \overrightarrow{OP} = 5\hat{i}, \quad \vec{v}_{sür} = 10\hat{j} \wedge 5\hat{i} \]
\[\vec{v}_{sür} = -50\hat{k}, \quad \left| \vec{v}_p \right| = 10\hat{i} - 50\hat{k} \]

b) \[\vec{a}_p = \vec{a}_{bağ} + \vec{a}_{sür} + \vec{a}_{cor} \]
\[\vec{a}_{bağ} = -4\hat{i}, \quad \vec{a}_{sür} = \vec{a} \wedge \overrightarrow{OP} + \vec{o} \wedge \vec{v}_{sür}, \quad \vec{a} = -20\hat{j} \]
\[\vec{a}_{sür} = -20\hat{j} \wedge 5\hat{i} + 10\hat{j} \wedge -50\hat{k}, \quad \vec{a}_{sür} = -500\hat{i} + 100\hat{k} \]
\[\vec{a}_{cor} = 2\vec{o}_{sür} \wedge \vec{v}_{bağ}, \quad \vec{a}_{cor} = 20\hat{j} \wedge 10\hat{i}, \quad \vec{a}_{cor} = -200\hat{k} \]
\[\vec{a}_p = -504\hat{i} - 100\hat{k} \]
Soru 2 farklı) Şekilde gösterilen iki çubuktan oluşan rjid cisim y eksenleri etrafında dönerken bir p bileziği x eksenindeki yatay konumda dönen kol üzerinde hareket ediyor. Verilen konum ve değerler için P bileziğinin
a) hızını
b) ivmesini bulunuz.

Çözüm:

a) \(\vec{V}_p = \vec{V}_bağ. + \vec{V}_sür. \)

\[\begin{align*}
\vec{V}_bağ. = & 10 \hat{i}, \quad \vec{V}_sür. = \vec{\omega} \wedge \overrightarrow{OP}, \quad \vec{\omega} = 10 \hat{j}, \quad \overrightarrow{OP} = 5 \hat{i}, \quad \vec{V}_sür. = 10 \hat{j} \wedge 5 \hat{i} \\
\vec{V}_sür. = & -50 \hat{k}, \quad \left[\vec{V}_p = 10 \hat{i} - 50 \hat{k} \right]
\end{align*} \]

b) \(\vec{a}_p = \vec{a}_bağ. + \vec{a}_sür. + \vec{a}_cor \)

\[\begin{align*}
\vec{a}_bağ. = & -4 \hat{i}, \quad \vec{a}_sür. = \vec{a} \wedge \overrightarrow{OP} + \vec{\omega} \wedge \vec{V}_sür., \quad \vec{\alpha} = -20 \hat{j} \\
\vec{a}_sür. = & -20 \hat{j} \wedge 5 \hat{i} + 10 \hat{j} \wedge -50 \hat{k}, \quad \vec{a}_sür. = -500 \hat{i} + 100 \hat{k} \\
\vec{a}_cor. = & 2\vec{\omega}_sür. \wedge \vec{V}_bağ., \quad \vec{a}_cor. = 20 \hat{j} \wedge 10 \hat{i}, \quad \vec{a}_cor. = -200 \hat{k} \\
\vec{a}_p = & -504 \hat{i} - 100 \hat{k}
\end{align*} \]
Soru 3) 3kg kütleli ve 75 cm uzunluğundaki AB kolu şekilde gösterildiği gibi C de sabit mafsal ve B de bir ip yardımı ile tesbit edilmiştir. İp kesilip kol harekete brakılıyor kol düşey konuma geldiği anda C mesnetindeki tepki kuvvetini hesaplayınız.

Çözüm:

\[\sum \ddot{F} = m \ddot{a}_g \]
\[\sum F_x = ma_{gx} \]
\[\sum F_y = ma_{gy} \]

\[a_{gx} = \frac{L}{4} \alpha \quad a_{gy} = \frac{L}{4} \omega^2 \]

\[\sum M_c = I_c \alpha \quad \sum M_c = 0 \quad \Rightarrow \alpha = 0 \quad a_{gx} = 0 \quad \sum F_x = ma_{gx} \Rightarrow R_{c_x} = 0 \]

\[\tau_{(1)-(2)} + T_1 = T_2 \quad T_1 = 0 \quad (\text{ilk huzlar sıfır olduğundan}) \]

\[\tau_{(1)-(2)} = mg h \quad h = \frac{L}{4} \quad \tau_{(1)-(2)} = mg \frac{L}{4} \]

\[T_2 = \frac{1}{2} I_c \omega^2 \quad I_c = I_g + m\left(\frac{L}{4}\right)^2 \quad I_c = \frac{1}{12} mL^2 + \frac{1}{16} mL^2 \quad \Rightarrow I_c = \frac{7}{48} mL^2 \]

\[T_2 = \frac{1}{2} \frac{24}{248} mL^2 \omega^2 = mg \frac{L}{4} \quad \Rightarrow \omega = \sqrt{\frac{24g}{7L}} \quad \omega = \sqrt{\frac{24 \times 9.81}{7 \times 0.75}} \quad \omega = 6.697 \text{ rad/s} \]

\[a_{gy} = \frac{0.75}{4} \frac{24 \times 9.81}{7 \times 0.75} \quad a_{gy} = 8.41 m/s^2 \]

\[\sum F_y = ma_{gy} \Rightarrow R_{c_y} - mg = m8.41 \Rightarrow R_{c_y} = m(g + 8.41) \quad R_{c_y} = 54.66 N \]

\[R_c = 54.66 N \uparrow \]
Soru 1: A otomobili otobanda doğrusal bir yolda hareket ederken B otomobilide $R = 150$ m. Yaracağı bir çakıta hareket ediyor. A nının hızı 1 m/s^2 oranında artarken B nının hızı 0.9 m/s^2 oranında azalıyor. Şekilde gösterilen konum için

a) A nın Bye göre hızını $V_{A/B}$,
b) A nın B ye göre ivmesini $a_{A/B}$ hesaplayınız.

Çözüm:

a) $\vec{V}_{A/B} = \vec{V}_A - \vec{V}_B$

$\vec{V}_A = 75\, \vec{i}$, $\vec{V}_B = 40\cos30^{\circ}\, \vec{i} - 40\sin30^{\circ}\, \vec{j}$, $\vec{V}_B = 20\sqrt{3}\, \vec{i} - 20\, \vec{j}$

$\vec{V}_{A/B} = (75 - 20\sqrt{3})\, \vec{i} + 20\, \vec{j}$, $\vec{V}_{A/B} = 40,36\, \vec{i} + 20\, \vec{j}$, $V_{A/B} = 45,04\text{ km/h}$

$\theta = \arctan\frac{20}{40,36} = 26,36^{\circ}$

b) $\vec{a}_{A/B} = \vec{a}_A - \vec{a}_B$

$\vec{a}_A = \vec{\imath}$

$\vec{a}_B = (a_B)_{\vec{\imath}}\, \vec{\imath} + (a_B)_{\vec{j}}\, \vec{j}$, $(a_B)_{\vec{\imath}} = -0,9\text{ m/s}^2$, $(a_B)_{\vec{j}} = \frac{V_B^2}{R}$

$V_B = 40\text{ km/h}$, $\frac{40 \times 1000}{60 \times 60} = m/s$, $V_B = 11,11\text{ m/s}$, $(a_B)_{\vec{j}} = \frac{(11,11)^2}{150}$

$(a_B)_{\vec{\imath}} = 0,823\text{ m/s}^2$, $(a_B)_{\vec{j}} = -0,9\, \vec{\imath} + 0,823\, \vec{j}$

$\vec{a}_B = -0,9\, (\cos30^{\circ}\, \vec{i} + \sin30^{\circ}\, \vec{j}) + 0,823\, (-\sin30^{\circ}\, \vec{i} - \cos30^{\circ}\, \vec{j})$

$\vec{a}_B = -0,45\sqrt{3} + 0,4115\, \vec{i} + (0,45 - 0,4115\sqrt{3})\, \vec{j}$

$\vec{a}_B = -1,191\, \vec{i} - 0,2627\, \vec{j}$

$\vec{a}_{A/B} = 2,191\, \vec{i} - 0,2627\, \vec{j}$, $a_{A/B} = 2,206\text{ m/s}^2$, $\varphi = \arctan\frac{0,2627}{2,191} = 6,84^{\circ}$
Soru 2: Şekildeki Krank-Biyel mekanizmasında AB kranksa saat İbrelerinin tersi yönünde \(\omega_{AB} = 5 \text{ rad/s} \) (sabit) açısal hızı ile döndüğüne göre Şekilde gösterilen konum için C pistonunun a) hızını b) ivmesini bulunuz.

\[\begin{align*}
V_B & = \omega_{AB} \overrightarrow{AB} , \quad V_B = 5 \cdot 10 \text{ cm/s} , \quad V_B = 50 \text{ cm/s} \\
V_B & = \omega_{BC} \overrightarrow{IB} \quad \Rightarrow \quad \omega_{BC} = \frac{V_B}{IB} , \quad IB = \sqrt{30^2 - 10^2} , \quad IB = 10\sqrt{8} \text{ cm} , \quad \omega_{BC} = \frac{5}{\sqrt{8}} \text{ rad/s} \\
V_C & = \omega_{BC} \overrightarrow{IC} , \quad V_C = \frac{50}{\sqrt{8}} \text{ cm/s} , \quad V_C = 17.68 \text{ cm/s} \\
b) \quad \ddot{a}_C & = \ddot{a}_B + \ddot{a}_{C/B} , \quad \ddot{a}_B = \alpha_{AB} \overrightarrow{k} \wedge AB + \omega_{AB} \overrightarrow{k} \wedge \ddot{V}_B , \quad \omega_{AB} \text{ sabit olduğundan } \alpha_{AB} = 0 \text{ dır.} \\
\ddot{V}_B & = 50 \overrightarrow{j} , \quad \ddot{a}_B = 5 \overrightarrow{k} \wedge 50 \overrightarrow{j} , \quad \ddot{a}_B = -250 \overrightarrow{i} , \quad \ddot{a}_{C/B} = \alpha_{BC} \overrightarrow{k} \wedge BC + \omega_{BC} \wedge \ddot{V}_{C/B} \\
\ddot{\omega}_{BC} & = -\frac{5}{\sqrt{8}} \overrightarrow{k} , \quad \ddot{V}_{C/B} = \dddot{V}_C - \ddot{V}_B , \quad \dddot{V}_C = -17.68 \overrightarrow{i} , \quad \dddot{V}_{C/B} = -17.68 \overrightarrow{i} - 50 \overrightarrow{j} \\
\overrightarrow{BC} & = 10\sqrt{8} \overrightarrow{i} - 10 \overrightarrow{j} , \quad \dddot{a}_{C/B} = \alpha_{BC} \overrightarrow{k} \wedge (10\sqrt{8} \overrightarrow{i} - 10 \overrightarrow{j}) - \frac{5}{\sqrt{8}} \overrightarrow{k} \wedge (-17.68 \overrightarrow{i} - 50 \overrightarrow{j}) \\
\dddot{a}_{C/B} & = (10\alpha_{BC} - \frac{250}{\sqrt{8}}) \overrightarrow{i} + (10\sqrt{8} \alpha_{BC} + \frac{250}{\sqrt{8}}) \overrightarrow{j} , \quad \dddot{a}_C = a_C \overrightarrow{i} \\
\dddot{a}_C & = a_C \overrightarrow{i} = (10\alpha_{BC} - \frac{250}{\sqrt{8}} - 250) \overrightarrow{i} + (10\sqrt{8} \alpha_{BC} + \frac{250}{\sqrt{8}}) \overrightarrow{j} \\
10\alpha_{BC} - \frac{250}{\sqrt{8}} - 250 & = a_C \\
10\sqrt{8} \alpha_{BC} + \frac{250}{\sqrt{8}} & = 0 \\
\Rightarrow & \quad \alpha_{BC} = -\frac{25}{8\sqrt{8}} = -1.105 \text{ rad/s}^2 \\
a_C & = -349.4 \text{ cm/s}^2
Soru 3: Bir boyama atölyesinde kullanılan şekilde mekanizmada boya parçacıkları

R = 250 mm yarıçaplı bir çembersel tüp içinde çembersel tüpe göre \(V_{bağ} = 150 \text{ mm/s} \) (sabit) bağlı hızı ile hareket ediyor. Aynı anda çembersel tüp ABC kolu etrafında \(\omega_1 = 0,4 \text{ rad/s} \) (sabit) açısal hızı ile dönüyor. Tüp içinde hareket eden boya parçacıklarının hızını ve ivmesini \(\theta = 120^\circ \) için sabit sisteme göre bulunuz.

\[V_{bağ} = 150 \text{ mm/s} \]

\[\begin{align*}
\vec{V}_{bağ} &= \vec{V}_{bağ}^k + \vec{V}_{sür} \\
\vec{V}_{bağ}^k &= -\dot{\theta} \hat{k} \wedge \overrightarrow{GP}, \quad \dot{\theta} = \frac{150}{250} \text{ rad/s}, \quad \overrightarrow{GP} = 250 \cos 60^\circ \hat{i} + 250 \sin 60^\circ \hat{j} \\
\vec{V}_{bağ} = -\frac{3}{5} \hat{k} \wedge (125 \hat{i} + 125 \sqrt{3} \hat{j}), \quad \vec{V}_{bağ}^k = 75 \sqrt{3} \hat{i} - 75 \hat{j}, \quad \vec{V}_{sür} = \omega_1 \hat{i} \wedge \overrightarrow{GP} \\
\vec{V}_{sür} &= 0,4 \hat{i} \wedge (125 \hat{i} + 125 \sqrt{3} \hat{j}), \quad \vec{V}_{sür} = 50 \sqrt{3} \hat{k}, \quad \vec{V}_{bağ} = 75 \sqrt{3} \hat{i} - 75 \hat{j} + 50 \sqrt{3} \hat{k} \\
\vec{V}_p &= 129,9 \hat{i} - 75 \hat{j} + 86,6 \hat{k} \\
\vec{a}_{bağ} &= -\dot{\theta} \hat{k} \wedge \overrightarrow{GP} - \dot{\hat{k}} \wedge \vec{V}_{bağ}, \quad \dot{\theta} \text{ sabit olduğundan } \ddot{\theta} = 0 \text{ dır.} \\
\vec{a}_{bağ} = -\frac{3}{5} \hat{k} \wedge (75 \sqrt{3} \hat{i} - 75 \hat{j}), \quad \vec{a}_{bağ} = -45 \hat{i} - 45 \sqrt{3} \hat{j} \\
\vec{a}_{sür} &= \alpha_1 \hat{i} \wedge \overrightarrow{GP} + \omega_1 \hat{i} \wedge \vec{V}_{sür}, \quad \alpha_1 \text{ sabit olduğundan } \alpha_1 = 0 \text{ dır.} \quad \vec{a}_{sür} = 0,4 \hat{i} \wedge 50 \sqrt{3} \hat{k} \\
\vec{a}_{sür} = 20 \sqrt{3} \hat{j}, \quad \vec{a}_{sür} = 2 \omega_1 \hat{i} \wedge \vec{V}_{bağ}, \quad \vec{a}_{sür} = 0,8 \hat{i} \wedge (75 \sqrt{3} \hat{i} - 75 \hat{j}) \\
\vec{a}_{cor} = -60 \hat{k}, \quad \vec{a}_p = -45 \hat{i} - 65 \sqrt{3} \hat{j} - 60 \hat{k}, \quad \vec{a}_p = -45 \hat{i} - 112,6 \hat{j} - 60 \hat{k}
Soru 1: Verilen mekanizmadaki doğrusal hareket yapan A bileğinin Şekilde gösterildiği anda hızı sağa doğru \(V_A = 2.5 \text{ m/s} \) , ivmesi \(a_A = 1.5 \text{ m/s}^2 \) olduğuna göre BC kranının açısal hızını ve açısal ivmesini \(\theta = 30^\circ \) için bulunuz.

Ani dönme merkezi I sonsuzda olduğundan \(\omega_{AB} = 0 \) ve \(V_A = V_B \) dir.

\[
V_B = \omega_{BC} \overrightarrow{BC} \quad \Rightarrow \quad \omega_{BC} = \frac{V_B}{BC}, \quad \omega_{BC} = \frac{2.5}{1.25}, \quad \omega_{BC} = 2 \text{ rad/s}
\]

\[
\ddot{a}_B = 1.5 \hat{i} = \ddot{a}_B + \ddot{a}_{A/B}
\]

\[
\ddot{a}_B = \alpha_{BC} \hat{k} \land CB + \omega_{BC} \hat{k} \land \vec{V}_B, \quad \ddot{a}_{A/B} = \alpha_{AB} \hat{k} \land BA + \omega_{AB} \hat{k} \land \vec{V}_{A/B}
\]

\[
\overrightarrow{CB} = \begin{pmatrix} -1.25 \hat{j} \end{pmatrix}, \quad \vec{V}_B = 2.5 \hat{i}, \quad \overrightarrow{BA} = \frac{3}{2} \sqrt{3} \hat{i} - \frac{3}{2} \hat{j}
\]

\[
\ddot{a}_B = \alpha_{BC} \hat{k} \land (-1.25) \hat{j} + 2 \hat{k} \land 2.5 \hat{i}, \quad \ddot{a}_B = 1.25 \alpha_{BC} \hat{i} + 5 \hat{j}
\]

\[
\ddot{a}_{A/B} = \alpha_{AB} \hat{k} \land \left(\frac{3}{2} \sqrt{3} \hat{i} - \frac{3}{2} \hat{j} \right), \quad \ddot{a}_{A/B} = \frac{3}{2} \alpha_{AB} \hat{i} + \frac{3}{2} \sqrt{3} \alpha_{AB} \hat{j}
\]

\[
\ddot{a}_A = 1.5 \hat{i} = (1.25 \alpha_{BC} + \frac{3}{2} \alpha_{AB}) \hat{i} + (\frac{3}{2} \sqrt{3} \alpha_{AB} + 5) \hat{j}
\]

\[
\begin{cases}
1.25 \alpha_{BC} + \frac{3}{2} \alpha_{AB} = 1.5 \\
\frac{3}{2} \sqrt{3} \alpha_{AB} + 5 = 0
\end{cases} \quad \Rightarrow \quad \alpha_{AB} = -1.92 \text{ rad/s}^2, \quad \alpha_{BC} = 3.51 \text{ rad/s}^2
\]
Soru 2: Dikdörtgen çeklindeki OABC plakası xoy düzleminde kalarak o noktasta etrafında x den y ye doğru
\(V_{bağ.} = 6 \text{ cm/s} \) (sabit) bağlı hız ile hareket ediyor. Plaka şeklindeki konumdan geçerken
acısal hız \(\omega = 8 \text{ rad/s} \) (sabit) olup P maddesel noktası AC köşegeninin ortasındadır. Bu an için P maddesel noktasının sabit eksen sistemine göre hız ve ivme vektörlerini hesaplayınız.

Çözüm:

\[
\begin{align*}
\vec{V}_p &= \vec{V}_{bağ.} + \vec{V}_{sur.} \\
\vec{V}_{bağ.} &= \vec{V}_{bağ.} \vec{U}_{AC}, \quad \vec{U}_{AC} = \frac{4}{5} \vec{i} - \frac{3}{5} \vec{j}, \quad \vec{V}_{bağ.} = \frac{6}{5} \vec{i} - \frac{3}{5} \vec{j}, \quad \vec{V}_{bağ.} = \frac{24}{5} \vec{i} - \frac{18}{5} \vec{j} \\
\vec{V}_{sur.} &= \omega \vec{k} \wedge \vec{OP}, \quad \vec{OP} = 20 \vec{i} + 15 \vec{j}, \quad \vec{V}_{sur.} = 8 \vec{k} \wedge (20 \vec{i} + 15 \vec{j}), \quad \vec{V}_{sur.} = -120 \vec{i} + 160 \vec{j} \\
\vec{V}_p &= \left(\frac{24}{5} - 120 \vec{i} + (160 - \frac{18}{5}) \vec{j} \right), \quad \vec{V}_p = -115,2 \vec{i} + 156,4 \vec{j} \\
\vec{a}_p &= \vec{a}_{bağ.} + \vec{a}_{sur.} + \vec{a}_{cor.} \\
\vec{a}_{bağ.} &= \alpha \vec{U}_{AC}, \quad \vec{V}_{bağ.} \quad \text{sabit olduğundan} \quad \vec{a}_{bağ.} = \vec{0} \quad \text{dir.} \\
\vec{a}_{sur.} &= \alpha \vec{k} \wedge \vec{OP} + \omega \vec{k} \wedge \vec{V}_{sur.}, \quad \omega \quad \text{sabit olduğundan} \quad \alpha = 0 \quad \text{dir.} \quad \vec{a}_{sur.} = 8 \vec{k} \wedge (-120 \vec{i} + 160 \vec{j}) \\
\vec{a}_{sur.} &= -1280 \vec{i} - 960 \vec{j} \\
\vec{a}_{cor.} &= 2 \omega \vec{k} \wedge \vec{V}_{bağ.}, \quad \vec{a}_{cor.} = 16 \vec{k} \wedge \left(\frac{24}{5} \vec{i} - \frac{18}{5} \vec{j} \right), \quad \vec{a}_{cor.} = 57,6 \vec{i} + 76,8 \vec{j} \\
\vec{a}_{p} &= -1222,4 \vec{i} - 883,2 \vec{j}
\end{align*}
\]
Soru 3 : 6 kg kütleli homojen bir çubuğun A ucu yatay düzlemle temas halinde iken B ucu düşey düzlemde hareket edebilen bir bileziğe mafsallıdır. Ve bu bileziğe bir P kuvveti uygulanarak bileziğe yukarı doğru $V_b = 0,5 m/s$ (sabit) hız verilmektedir. Sürünme kuvvetlerini ihmal ederek A mesnedindeki tepki kuvvetini $\theta = 30^0$ için bulunuz.

![Diagram](image)

Çözüm:

$$\sum \ddot{F} = m\ddot{a}_G, \quad \sum M_G = I_G$$

$$\ddot{a}_G = \ddot{a}_B + \ddot{a}_{G/B}, \quad v_B \text{ sabit olduğundan } \ddot{a}_B = 0 \text{ dir.}$$

$$\ddot{a}_{G/B} = \alpha_{AB} \dddot{k} \wedge BG + \omega_{AB} \dddot{k} \wedge \dddot{V}_{G/B}, \quad \dddot{V}_{G/B} = \omega_{AB} \dddot{k} \wedge \dddot{V}_{G/B}$$

$$\dddot{a}_A = \dddot{a}_B + \dddot{a}_{A/B}, \quad \dddot{a}_A = a_A \dddot{i}, \quad \dddot{a}_B = 0, \quad \dddot{a}_{A/B} = \alpha_{AB} \dddot{k} \wedge B\dddot{A} + \omega_{AB} \dddot{k} \wedge \dddot{V}_{A/B}$$

$$\dddot{V}_B = \dddot{IB} \ast \omega_{AB} \Rightarrow \omega_{AB} = \frac{V_B}{\dddot{IB}} = \frac{0,5}{0,6\sqrt{3}}, \quad \omega_{AB} = \frac{5}{6\sqrt{3}}, \quad \dddot{V}_A = \frac{1}{2\sqrt{3}}\dddot{i}$$

$$\dddot{V}_{A/B} = \frac{1}{2\sqrt{3}}\dddot{i} - 0,5\dddot{j}, \quad \dddot{V}_{G/B} = \frac{5}{6\sqrt{3}}\dddot{k} \wedge (-0,3\sqrt{3}\dddot{i} - 0,3\dddot{j}), \quad \dddot{V}_{G/B} = \frac{1}{4\sqrt{3}}\dddot{i} - \frac{1}{4}\dddot{j}$$

$$a_A \dddot{i} = \alpha_{AB} \dddot{k} \wedge (-0,6\sqrt{3}\dddot{i} - 0,6\dddot{j}) + \frac{5}{6\sqrt{3}}\dddot{k} \wedge (\frac{1}{2\sqrt{3}}\dddot{i} - 0,5\dddot{j})$$

$$a_A \dddot{i} = (0,6\alpha_{AB} + \frac{5}{12\sqrt{3}})\dddot{i} + (-0,6\sqrt{3}\alpha_{AB} + \frac{5}{12*3})\dddot{j} \Rightarrow \alpha_{AB} = 0,13365 \text{ rad} / s^2, \quad a_A = 0,32075 \text{ m} / s^2$$

$$\dddot{a}_G = 0,13365\dddot{k} \wedge (-0,3\sqrt{3}\dddot{i} - 0,3\dddot{j}) + \frac{5}{6\sqrt{3}}\dddot{k} \wedge (\frac{1}{4\sqrt{3}}\dddot{i} - \frac{1}{4}\dddot{j})$$
\[\ddot{a}_G = 0,160375 \hat{i} - 3,22 \times 10^{-11} \hat{j}, \quad \ddot{a}_G = 0,160375 \hat{i} \]
\[\sum F_x = m a_x \Rightarrow N = 6 \times 0,160375, \quad N = 0,96 \text{ Newton} \]
\[\sum F_y = m a_y \Rightarrow P + R_A - mg = 0, \quad P + R_A = 6 \times 9,81, \quad P + R_A = 58,86 \text{ Newton} \]
\[\sum M_G = I_G \Rightarrow \frac{0,6 \sqrt{3}}{2} P - \frac{0,6}{2} N - \frac{0,6 \sqrt{3}}{2} R_A = \frac{1}{12} m \cdot L^2 \cdot \alpha_{AB} \]
\[\frac{0,6 \sqrt{3}}{2} P - 0,96 \times \frac{0,6}{2} - \frac{0,6 \sqrt{3}}{2} R_A = \frac{1}{12} \times 6 \times 1,2^2 \times 0,13365 \]
\[P - R_A = 0,384225 \times \frac{2}{0,6 \sqrt{3}} \]
\[P + R_A = 58,86 \]
\[\Rightarrow R_A = 29,06 \text{ Newton} \]
Makine 2 G1 2002-2003 Yaz Okulu Dinamik Dersi 3. Vize Soruları ve Cevapları

Soru 1: 60 mm yarıçapındaki bir A tekerleği AB çubuına A ucundan mafsallıdır. AB çubuğu da C de sabit mafsalli olan BC çubuına B ucundan mafsallıdır. Şekilde gösterildiği anda A tekerleğinin merkezi sola doğru 300 mm/s (sabit) hız ile hareket ediyor. Bu anda çubukların, a) açısal hızlarını b) açısal ivmelerini bulunuz.

Çözüm:

\[a) \quad V_A = \mathbf{\bar{I}A} \omega_{AB} \Rightarrow \omega_{AB} = \frac{V_A}{\mathbf{\bar{I}A}}, \quad \mathbf{\bar{I}A} = \mathbf{\bar{IK}} - 60 \]

\[\mathbf{\bar{IK}} = 245 \tan \theta , \quad \tan \theta = \frac{240}{70}, \quad \mathbf{\bar{IK}} = 840 \text{ mm} \]

\[\mathbf{\bar{IA}} = 780 \text{ mm}, \quad \omega_{AB} = \frac{300}{78}, \quad \omega_{AB} = \frac{15}{39}, \quad \omega_{AB} = 0,385 \text{ rad/s} \]

\[V_B = \mathbf{\bar{IB}} \omega_{AB}, \quad \mathbf{\bar{IB}} = \mathbf{\bar{IC}} - \mathbf{\bar{BC}}, \quad \mathbf{\bar{BC}} = \sqrt{70^2 + 240^2}, \quad \mathbf{\bar{BC}} = 250 \text{ mm} \]

\[\mathbf{\bar{IC}} = \frac{245}{70} \Rightarrow \mathbf{\bar{IC}} = 875 \text{ mm}, \quad \mathbf{\bar{IB}} = 625 \text{ mm}, \quad V_B = 240,4 \text{ mm/s} \]

\[V_B = \mathbf{\bar{BC}} \omega_{BC} \Rightarrow \omega_{BC} = \frac{V_B}{\mathbf{\bar{BC}}}, \quad \omega_{BC} = 75/78 \]

\[\omega_{BC} = 0,96 \text{ rad/s} \]

\[b) \quad \mathbf{\bar{a}}_B = \alpha_{BC} \mathbf{\bar{\kappa}} \wedge \mathbf{\bar{CB}} - \omega_{BC} \mathbf{\bar{\kappa}} \wedge \mathbf{\bar{V}}_B \]

\[\mathbf{\bar{a}}_B = \mathbf{\bar{a}}_A + \mathbf{\bar{a}}_{B/A}, \quad A \text{ noktasının hareketi doğrusal hız ve hızı } V_A \text{ sabit olduğundan } \mathbf{\bar{a}}_A = 0 \text{ dir.} \]

Bu durumda \[\mathbf{\bar{a}}_B = \alpha_{AB} \mathbf{\bar{\kappa}} \wedge \mathbf{\bar{AB}} + \omega_{AB} \mathbf{\bar{\kappa}} \wedge \mathbf{\bar{V}}_{B/A} \]

yazılabilir.

\[\mathbf{\bar{V}}_B = -\omega_{BC} \mathbf{\bar{\kappa}} \wedge \mathbf{\bar{CB}}, \quad \mathbf{\bar{V}}_{B/A} = \mathbf{\bar{V}}_B - \mathbf{\bar{V}}_A, \quad \mathbf{\bar{V}}_A = 300 \mathbf{i}, \quad \mathbf{\bar{CB}} = 70 \mathbf{i} + 240 \mathbf{j}, \quad \mathbf{\bar{AB}} = -175 \mathbf{i} + 180 \mathbf{j} \]

\[\mathbf{\bar{V}}_B = -\frac{75}{78} \mathbf{\bar{\kappa}} \wedge (70 \mathbf{i} + 240 \mathbf{j}), \quad \mathbf{\bar{V}}_B = 230,77 \mathbf{i} - 67,31 \mathbf{j}, \quad \mathbf{\bar{V}}_{B/A} = -69,23 \mathbf{i} - 67,31 \mathbf{j} \]

\[\mathbf{\bar{a}}_B = \alpha_{AB} \mathbf{\bar{\kappa}} \wedge (-175 \mathbf{i} + 180 \mathbf{j}) + \frac{15}{39} \mathbf{\bar{\kappa}} \wedge (-69,23 \mathbf{i} - 67,31 \mathbf{j}) \]

\[\mathbf{\bar{a}}_B = (-180 \alpha_{AB} + 25,89) \mathbf{i} + (-175 \alpha_{AB} - 26,63) \mathbf{j} \]

\[\mathbf{\bar{a}}_B = \alpha_{BC} \mathbf{\bar{\kappa}} \wedge (70 \mathbf{i} + 240 \mathbf{j}) - \frac{75}{78} \mathbf{\bar{\kappa}} \wedge (230,77 \mathbf{i} - 67,31 \mathbf{j}) \]
\[\ddot{a}_B = (-240\alpha_{BC} - 64,72) \hat{i} + (70\alpha_{BC} - 221,89) \hat{j} \]
\[\ddot{a}_B = (-240\alpha_{BC} - 64,72) \hat{i} + (70\alpha_{BC} - 221,89) \hat{j} = (-180\alpha_{AB} + 25,89) \hat{i} + (-175\alpha_{AB} - 26,63) \hat{j} \]
\[-240\alpha_{BC} - 64,72 = -180\alpha_{AB} + 25,89 \]
\[70\alpha_{BC} - 221,89 = -175\alpha_{AB} - 26,63 \]
\[\begin{cases}
180\alpha_{AB} - 240\alpha_{BC} = 90,61 \\
175\alpha_{AB} + 70\alpha_{BC} = 195,26
\end{cases} \]
\[\Rightarrow \]
\[\alpha_{AB} = 0,97 \text{ rad/s}^2 \]
\[\alpha_{BC} = 0,35 \text{ rad/s}^2 \]
Soru 2: Merkezinden R/2 mesafesinde mafsallı olan bir eksantrik A etrafında \(\omega = 30 \text{ rad} / \text{s} \) açısal hız ile dönüyor. Aynı anda P rulman ve itici yay tarafından eksantrige sürekli temasta olan PB çubu doğrusal öteleme hareketi yapıyor. Şekilde gösterildiği anda PB çubğunun, a) hızını b) ivmesini bulunuz.

![Diagram](image)

\(R = 8 \text{ cm.} \)

Çözüm:

a) \(\vec{V}_p = \vec{V}_{bağ} + \vec{V}_{sür} \), \(\vec{V}_p = V_p \hat{i} \)

\[\vec{V}_{sür} = \omega \vec{k} \wedge \overrightarrow{AP} \]
\[\overrightarrow{AP} = \frac{3}{2} R \hat{i} \]
\[\vec{V}_p = 30 \hat{k} \wedge 12 \hat{i} \]

\[\vec{V}_{bağ} = \omega_{bağ} \vec{k} \wedge \overrightarrow{GP} \]
\[\vec{V}_{bağ} = 8 \omega_{bağ} \hat{j} \]

\[\vec{V}_p = (8 \omega_{bağ} + 360) \hat{j} \]

\[(8 \omega_{bağ} + 360) = 0 \Rightarrow \omega_{bağ} = -45 \text{ rad} / \text{s} \]

b) \(\vec{a}_p = \vec{a}_{bağ} + \vec{a}_{sür} + \vec{a}_{cor} \), \(\vec{a}_p = a_p \hat{i} \)

\[\vec{a}_{bağ} = \alpha_{bağ} \vec{k} \wedge \overrightarrow{GP} + \omega_{bağ} \vec{k} \wedge \vec{V}_{bağ} \]
\[\vec{V}_{bağ} = -360 \hat{j} \]
\[\vec{a}_{bağ} = 8 \alpha_{bağ} \hat{j} - 2880 \hat{i} \]

\[\vec{a}_{sür} = \alpha \vec{k} \wedge \overrightarrow{AP} + \omega \vec{k} \wedge \vec{V}_{sür} \]
\[\omega \text{ sabit olduğundan } \alpha = 0 \text{ dır.} \]

\[\vec{a}_{sür} = 30 \hat{k} \wedge 360 \hat{j} \]
\[\vec{a}_{cor} = 2 \alpha \vec{k} \wedge \vec{V}_{bağ} \]

\[\vec{a}_{cor} = 60 \hat{k} \wedge -360 \hat{j} \]

\[\vec{a}_{cor} = 21600 \hat{i} \]

\[\vec{a}_p = a_p \hat{i} = (2880 - 10800 + 21600) \hat{i} + 8 \alpha_{bağ} \hat{j} \]

\[a_p = -2880 - 10800 + 21600 \]

\[8 \alpha_{bağ} = 0 \]

\[\Rightarrow a_p = 7920 \text{ mm} / \text{s}^2 \]

\[\alpha_{bağ} = 0 \]
Soru 3: 1,5 kg kütleli bir yarıçap şeklindeki çubuk A ucuna bağlına bilezik düsey bir kanalda , B ucuna bağlına bilezik ise yatay kanalda hareket ediyor. Bileziklerin kütleleri ihmal edildiğine göre B bileziğine yatay doğrultuda değişken bir P kuvveti uygulanarak B nin sağa doğru 5 m/s sabit hız ile hareketi sağlanır, Şekildeki konum için

a) P kuvvetinin şiddetini b) B deki tepki kuvvetini bulunuz.

Çözüm :
\[\sum \vec{F} = \vec{m} \vec{a}, \quad \sum M_G = I_G \alpha \] kinetik denklemleri uygulayabilmek için çubuğun acısal hızı ve kütеле merkezinin ivmesi ile ilgili kinematik bağıntıları kullanmak gerekir.

\[\vec{a}_G = \vec{a}_A + \vec{a}_{G/A}, \quad \vec{a}_B = \vec{a}_A + \vec{a}_{B/A} \]

\[\vec{a}_{G/A} = \alpha \vec{k} \wedge \vec{AG} + \omega \vec{k} \wedge \vec{V}_{G/A}, \quad \vec{a}_{B/A} = \alpha \vec{k} \wedge \vec{AB} + \omega \vec{k} \wedge \vec{V}_{B/A} \]

\[V_B \] sabit olduğundan \(a_B = 0 \) dır.

Ani dönme merkezi A da ki mafsalı üzerinde olduğundan \(V_A = 0 \) dır.

\[V_B = \frac{\vec{V}_{AB}}{\vec{AB}} \quad \Rightarrow \quad \omega = \frac{V_B}{\vec{AB}}, \quad \omega = \frac{5}{0,4}, \quad \omega = 12,5 \text{ rad/s} \]

\[\vec{V}_{G/A} = \vec{V}_{AB} - \vec{V}_A, \quad \vec{V}_{B/A} = 5 \vec{i}, \quad \vec{AB} = -2R \vec{j}, \quad \vec{V}_{G/A} = \omega \vec{k} \wedge \vec{AG}, \quad \vec{AG} = \frac{2R}{\pi} \vec{i} - R \vec{j} \]

\[\vec{a}_{B/A} = \alpha \vec{k} \wedge -0,4 \vec{j} + 12,5 \vec{k} \wedge 5 \vec{i}, \quad \vec{a}_{B/A} = 0,4 \alpha \vec{i} + 62,5 \vec{j} = -a_A \vec{j} \quad \Rightarrow \quad \alpha = 0 \]

\[a_A = -62,5 \text{ m/s}^2, \quad a_A = -62,5 \vec{j} \]

\[\vec{AG} = 0,127 \vec{i} - 0,2 \vec{j}, \quad \vec{V}_{G/A} = 12,5 \vec{k} \wedge (0,127 \vec{i} - 0,2 \vec{j}), \quad \vec{V}_{G/A} = 2,5 \vec{i} + 1,5915 \vec{j} \]

\[\vec{a}_{G/A} = 12,5 \vec{k} \wedge (2,5 \vec{i} + 1,5915 \vec{j}), \quad \vec{a}_{G/A} = -19,89 \vec{i} + 31,25 \vec{j} \]

\[\sum \vec{F} = \vec{m} \vec{a}_G \Rightarrow (P + R_A) \vec{i} + (R_B - mg) \vec{j} = m (-19,89 \vec{i} - 31,25 \vec{j}) \Rightarrow \]

\[P + R_A = -19,89 \text{ m} \]

\[R_B - mg = -31,25 \quad \Rightarrow \quad R_B = -32,16 \text{ Newton} \]

\[\sum M_G = I_G \alpha, \quad \alpha = 0 \] olduğundan \(\sum M_G = 0 \) \(\Rightarrow \quad P \cdot R - R_B \frac{2R}{\pi} - R_A R = 0 \)

\[P - R_A = -20,47 \]

\[P + R_A = -29,84 \quad \Rightarrow \quad P = -25,16 \text{ Newton}, \quad R_A = -4,68 \text{ Newton} \]
Soru 1: BHDF İstavrozu AB ve DE çubukları ile bağlanmıştır. AB Çubuğu $\omega_{ab} = 4 \text{ rad/s}$ sabit açısal hızı ile saat ibreleri yönünde dönüyor. Şekilde gösterildiği anda istavrozu a) açısal hızını b) açısal ivmesini c) G merkez noktasının ivmesini bulunuz.

Çözüm:

a) $V_B = \vec{AB} \cdot \omega_{AB}$, $\vec{AB} = \sqrt{150^2 + 200^2}$, $\overline{AB} = 250 \text{ mm}$, $V_B = 1000 \text{ mm/s}$

b) $\vec{V}_B = \vec{IB} \cdot \omega_{BHDF}$

b) $\vec{V}_B = \vec{IB} \cdot \omega_{BHDF}$, $\vec{IB} = \frac{V_B}{IB}$, $\omega_{BHDF} = \omega_{BHDF} = 4 \text{ rad/s}$

$c) \vec{V}_D = V_B = 1000 \text{ mm/s}$, $\omega_{BD} = 4 \text{ rad/s}$

b) $\vec{V}_D = V_B = 1000 \text{ mm/s}$, $\omega_{BD} = 4 \text{ rad/s}$

b) $\vec{V}_D = \vec{IB} \cdot \omega_{BHDF}$, $\vec{IB} = \frac{V_B}{IB}$, $\omega_{BHDF} = \omega_{BHDF} = 4 \text{ rad/s}$

b) $\vec{V}_D = \vec{IB} \cdot \omega_{BHDF}$, $\vec{IB} = \frac{V_B}{IB}$, $\omega_{BHDF} = \omega_{BHDF} = 4 \text{ rad/s}$
\[\ddot{a}_{G/D} = \alpha_{BDF} \ddot{k} \wedge (-150) \ddot{i} - 4 \ddot{k} \wedge 600 \ddot{j}, \quad \ddot{a}_{G/D} = 2400 \ddot{i} - 150 \alpha_{BDF} \ddot{j} \]
\[\ddot{a}_{G} = (-2400 \ddot{i} - 3200 \ddot{j}) + (-2400 \ddot{i} + 150 \alpha_{BDF} \ddot{j}) = \\
[(200 \alpha_{ED} + 2400) \ddot{i} + (-150 \alpha_{ED} - 3200) \ddot{j}] + (2400 \ddot{i} - 150 \alpha_{BDF} \ddot{j}) \\
\ddot{a}_{G} = -4800 \ddot{i} + (150 \alpha_{BDF} - 3200) \ddot{j} = \\
(4800 - 200 \alpha_{ED}) \ddot{i} + (-150 \alpha_{ED} - 3200 - 150 \alpha_{BDF} \ddot{j}) \]
\[\left\{ \begin{array}{l}
4800 - 200 \alpha_{ED} = -4800 \\
-150 \alpha_{ED} - 3200 - 150 \alpha_{BDF} = 150 \alpha_{BDF} - 3200
\end{array} \right\} \Rightarrow \alpha_{ED} = 48 \text{ rad} / \text{s}^2, \quad \alpha_{BDF} = 24 \text{ rad} / \text{s}^2 \\
\]
c) \[\ddot{a}_{G} = -4800 \ddot{i} + (150 \alpha_{BDF} - 3200) \ddot{j} \]
\[\dddot{a}_{G} = -4800 \dddot{i} + 400 \dddot{j}, \quad \dddot{a}_{G} = 4816,6 \text{ mm} / \text{s}^2, \quad \dddot{a}_{G} = 4,8 \text{ m} / \text{s}^2 \]
Soru 2: P pimi bir plaka içinde bulunan çembersel bir kanalda \(V_{bağ.} = 400 \text{ mm/s} \) (sabit) bağıl hızı ile hareket ediyor. Şekilde gösterildiği anda plakanın açısal hızı \(\omega = 6 \text{ rad/s} \) dir ve \(20 \text{ rad/s}^2 \) oran ile artmaktadır. ve \(\theta = 90^\circ \) olduğunu göre P piminin hızı ve ivmesini bulunuz.

![Diagram](image)

(Ölçüler mm. cinsindendir.)

Çözüm:
\[
\vec{V}_p = \vec{V}_{bağ.} + \vec{V}_{sür.}
\]
\[
\vec{V}_{bağ.} = V_{bağ.} \hat{i} \quad \text{ve} \quad \vec{V}_{sür.} = 400 \hat{i} \quad \text{ve} \quad \vec{V}_{sür.} = \omega \vec{AP} = 150 \hat{i} + 100 \hat{j}
\]
\[
\vec{V}_{sür.} = -6\hat{k} \times (150 \hat{i} + 100 \hat{j}) \quad \text{ve} \quad \vec{V}_{sür.} = 600 \hat{i} - 900 \hat{j} \quad \text{ve} \quad \vec{V}_{P} = 1000 \hat{i} - 900 \hat{j}
\]
\[
\vec{a}_P = \vec{a}_{bağ.} + \vec{a}_{sür.} + \vec{a}_{cor.}
\]
\[
\vec{a}_{bağ.} = \frac{dV_{bağ.}}{dt} \hat{i} - \frac{V_{bağ.}^2}{150} \hat{j} \quad \text{ve} \quad \vec{V}_{bağ.} \text{ sabit olduğundan} \quad \frac{dV_{bağ.}}{dt} = 0 \quad \vec{a}_{bağ.} = -\frac{400^2}{150} \hat{j}
\]
\[
\vec{a}_{bağ.} = -\frac{3200}{3} \hat{j}
\]
\[
\vec{a}_{sür.} = -\omega \vec{AP} - \omega \vec{V}_{sür.} \quad \vec{a}_{sür.} = -20\hat{k} \times (150\hat{i} + 100\hat{j}) - 6\hat{k} \times (600\hat{i} - 900\hat{j})
\]
\[
\vec{a}_{sür.} = -3000 \hat{j} + 2000\hat{i} - 3600\hat{j} - 5400\hat{i} \quad \vec{a}_{sür.} = -3400\hat{i} - 6600\hat{j}
\]
\[
\vec{a}_{cor.} = -2\omega \vec{V}_{bağ.} \quad \vec{a}_{cor.} = -12\hat{k} \times 400\hat{i} \quad \vec{a}_{cor.} = -4800 \hat{j}
\]
\[
\vec{a}_P = -3400\hat{i} - (11400 + \frac{3200}{3})\hat{j} \quad \vec{a}_P = -3400\hat{i} - 12466.7\hat{j}
\]
Soru 3: 12 kg kütleli AB çubuğunun uçları şekildeki kanallar doğrultusunda hareket etmektedir. Düşey kanalda hareket eden A ucuna katsayı $k = 120 \text{N/m}$ olan bir yay bağlıdır. Bu yay $\theta = 0$ da doğal uzunluğundadır. Eğer çubuk $\theta = 0$ da ilik hızız harekete bırakılsrsa $\theta = 30^\circ$ de A ucunun hızını bulunuz.

![Diagram](image)
MAKİNE 2 G1 2003-2004 GÜZ YARIYILI DİNAMİK DERSİ 1.VİZE SORULARI VE CEVAPLARI

SORU 1) Bir maddesel nokta bir doğru üzerinde \(a = -0.15V^2 \) ivme –hız bağıntısı ile hareket ediyor. \(t = 0 \) da konum \(s = 0 \) ve hız \(V = 36 \text{m/s} \) olduğuna göre \(t = 5 \) deki konumu hızı ve ivmeyi hesaplayınız.

Çözüm:

\[
a = \frac{dV}{dt} \quad \text{den} \quad \frac{dV}{dt} = -0.15V^2 \quad \Rightarrow \quad -0.15\int_0^t dt = \int V^{-2} dV
\]

\[
-0.15t = -\frac{1}{V} \bigg|_36^V \quad \Rightarrow \quad 0.15t = \frac{1}{V} - \frac{1}{36} \quad \Rightarrow \quad \frac{1}{V} = 0.15t + \frac{1}{36} \quad \Rightarrow \quad V = \frac{1}{0.15t + \frac{1}{36}}
\]

\[
V = \frac{ds}{dt} \quad \text{den} \quad \frac{ds}{dt} = \left(0.15t + \frac{1}{36}\right)^{-1} \quad \Rightarrow \quad \int ds = \int_0^t \left(0.15t + \frac{1}{36}\right)^{-1} dt
\]

\[
s = \frac{1}{0.15} \ln(0.15t + \frac{1}{36}) \bigg|_0^t \quad \Rightarrow \quad s = \frac{1}{0.15} \ln(\frac{0.15t + \frac{1}{36}}{\frac{1}{36}}) \quad \Rightarrow \quad s = \frac{1}{0.15} \ln(5.4t+1)
\]

\(t = 5 \). Saniyede \(s = \frac{1}{0.15} \ln(5.4*5+1) \), \(s = 22.21 \text{m} \)

\[
V = \frac{1}{0.15*5 + \frac{1}{36}}, \quad \boxed{V = 1.29 \text{m/s}}
\]

\[
a = -0.15*1.286^2, \quad \boxed{a = -0.248 \text{m/s}^2}
\]
SORU 2) A ve B motor bisikletleri iki çembersel yol üzerinde hızlarının şiddetleri sabit kalacak şekilde hareket etmektedir. Şekilde gösterildiği anda B motor bisikletinin A motor bisikletine göre yer, hız ve ivme vektörlerini bulunuz.

Şekilde A, B motor bisikletlerinin hiz ve ivme vektörleri gösterilmiştir.

Hiz ve ivme vektörleri hesaplanması için:

1. Hız vektörleri:
 \(\vec{V}_A = 30 \text{ km/saat} \)
 \(\vec{V}_B = 50 \text{ km/saat} \)

2. İvme vektörleri:
 \(\vec{a}_B = \frac{V_B^2}{R_B} \)
 \(\vec{a}_A = \frac{V_A^2}{R_A} \)

Çözüm:

- **B/A** vektörü:
 \(\vec{r}_{B/A} = \vec{r}_B - \vec{r}_A \)

- **A/B** vektörü:
 \(\vec{r}_{A/B} = \vec{r}_A - \vec{r}_B \)

- **Hız vektörü:**
 \(\vec{V}_{B/A} = \vec{V}_B - \vec{V}_A \)
 \(\vec{V}_{A/B} = \vec{V}_A - \vec{V}_B \)

- **İvme vektörü:**
 \(\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A \)
 \(\vec{a}_{A/B} = \vec{a}_A - \vec{a}_B \)

- **Hız ve ivme vektörleri** hesaplanarak, hız ve ivme değerleri bulunur.

- **Hız vektörü:**
 \(\vec{V}_{B/A} = (3 - \sin 40^0) \hat{i} + 1,5 \cos 40^0 \hat{j} \)
 \(\vec{V}_{A/B} = -\sin 30^0 \hat{i} + \cos 30^0 \hat{j} \)

- **İvme vektörü:**
 \(\vec{a}_{B/A} = 2,54 \hat{i} + 0,28 \hat{j} \)
 \(\vec{a}_{A/B} = -12,32 \hat{i} + 17,14 \hat{j} \)

- **B/A** hız ve ivme vektörleri:
 \(\vec{V}_{B/A} = 21,11 \text{ km/saat} \)
 \(\vec{a}_{B/A} = 621,31 \hat{i} - 497,32 \hat{j} \)

- **A/B** hız ve ivme vektörleri:
 \(\vec{V}_{A/B} = 795,8 \text{ km/saat} \)
 \(\vec{a}_{A/B} = 1071,313 \hat{i} - 1276,741 \hat{j} \)

- **A ve B motor bisikletleri** üzerindeki hız ve ivme vektörleri hesaplanarak, hareket boyutları ve yönleri belirlenir.
SORU 3) Şekildeki mekanizmada A diski saat ibreleri yönünde $\omega = 5 \, \text{rad/s}$ (sabit) açısal hızı ile dönüyor. Mekanizma verilen konumdan geçerken B bileziğinin a) hızını b) ivmesini bulunuz:

![Diagram](image-url)

Çözüm:

![Diagram](image-url)

a) Mekanizma şekildeki konumdan geçerken $\angle AIB = \angle ABI = 45^0$, $\overline{IA} = \overline{AB} = 0,8 \, \text{m}$

$\overline{IB} = 0,8 \sqrt{2} \, \text{m}$, $V_A = \overline{OA} \omega$, $V_A = 0,2 \times 5$, $V_A = 1 \, \text{m/s}$, $V_A = \overline{IA} \omega_{AB} \Rightarrow \omega_{AB} = \frac{V_A}{\overline{IA}}$

$\omega_{AB} = \frac{1}{0,8}$, $\omega_{AB} = 1,25 \, \text{rad/s}$, $V_B = \overline{IB} \omega_{AB}$, $V_B = 0,8 \sqrt{2} \times 1,25$, $V_B = \sqrt{2} \, \text{m/s}$

$V_B = 1,41 \, \text{m/s}$

b)
\[\ddot{a}_B = \ddot{a}_A + \ddot{a}_{B/A}, \quad \ddot{a}_A = \ddot{\alpha} \wedge \overrightarrow{O A} + \ddot{\omega} \wedge \dot{V}_A, \quad \ddot{\alpha} = 0, \quad \ddot{\omega} = -5 \dddot{k} \]

\[\dot{V}_A = V_A (\cos 45^0 \dddot{i} + \sin 45^0 \dddot{j}), \quad \dot{V}_A = \frac{\sqrt{2}}{2} \dddot{i} + \frac{\sqrt{2}}{2} \dddot{j}, \quad \dddot{a}_A = \frac{5\sqrt{2}}{2} \dddot{i} - \frac{5\sqrt{2}}{2} \dddot{j} \]

\[\ddot{a}_{B/A} = \ddot{\alpha}_{AB} \wedge \overrightarrow{A B} + \ddot{\omega}_{AB} \wedge \dot{V}_{B/A}, \quad \ddot{\alpha}_{AB} = \alpha_{AB} \dddot{k}, \quad \ddot{\omega}_{AB} = 1,25 \dddot{k}, \quad \overrightarrow{A B} = 0,4\sqrt{2} \dddot{i} + 0,4\sqrt{2} \dddot{j} \]

\[\dot{V}_{B/A} = \dot{V}_B - \dot{V}_A, \quad \dot{V}_B = \sqrt{2} \dddot{i}, \quad \dot{V}_{B/A} = \frac{\sqrt{2}}{2} \dddot{i} - \frac{\sqrt{2}}{2} \dddot{j} \]

\[\ddot{a}_{B/A} = -0,4\sqrt{2} \alpha_{AB} \dddot{i} + 0,4\sqrt{2} \alpha_{AB} \dddot{j} + 1,25 \frac{\sqrt{2}}{2} \dddot{i} + 1,25 \frac{\sqrt{2}}{2} \dddot{j} \]

\[\dddot{a}_{B/A} = (0,625 \sqrt{2} - 0,4 \sqrt{2} \alpha_{AB}) \dddot{i} + (0,625 \sqrt{2} + 0,4 \sqrt{2} \alpha_{AB}) \dddot{j}, \quad \dddot{a}_B = a_B \dddot{i} \]

\[a_B \dddot{i} = (3,125 \sqrt{2} - 0,4 \sqrt{2} \alpha_{AB}) \dddot{i} + (-1,875 \sqrt{2} + 0,4 \sqrt{2} \alpha_{AB}) \dddot{j} \quad \Rightarrow \]

\[3,125 \sqrt{2} - 0,4 \sqrt{2} \alpha_{AB} = a_B \quad \Rightarrow \quad a_B = 1,125 \sqrt{2}, \quad a_B = 1,77 \text{ m/s}^2, \quad \alpha_{AB} = 4,69 \text{ rad/s}^2 \]

\[-1,875 \sqrt{2} + 0,4 \sqrt{2} \alpha_{AB} = 0 \]
Soru 1) Şekilde görülen rulmanda iç bileziğin dış çapı 6 cm. bilyaların çapları 1 cm dir. İç bilezik $n_i = 600 \text{ devir/dakika}$ dönüş hızı ile dönerken dış bilezik sabittir. Bu durumda

a) Bilyaların kendi etrafındaki dönüş hızlarını $n_b =$? (devir/dakika)

b) Bilyaların merkezlerinin hızlarının şiddetini $V_b =$? (cm/s)

c) Bir bilyanın rulmanın çevresini dönüş hızını $n_{B/O} =$? (devir/dakika) bulunuz.

(Bilyaların iç ve dış bilezikle temas noktalarında kayma olmadığını kabul ediniz.)

Çözüm:

Bilyanın iç bileziğe temas noktası olan I da kayma olmadığı için hızlar birbirine eşittir. $V_i = \frac{6}{2} \omega_i$ ayrıca bilyanın hareketsiz olan dış bileziğe temas noktası olan C nin hızı sıfırdır.

olduğundan $V_i = C\ell \ast \omega_b$ yazılabilir. $\omega_i = \frac{2\pi n_i}{60}$, $\omega_i = \frac{2\pi 600}{60}$, $\omega_i = 20\pi \text{ rad/s}$

$b) V_B = BC \ast \omega_b$, $V_B = 0.5 \ast 60\pi$, $V_B = 30\pi \text{ cm/s}$, $V_B = 94.25 \text{ cm/s}$

c) $V_B = OB \ast \omega_{B/O}$ $\Rightarrow \omega_{B/O} = \frac{V_B}{3.5}$, $\omega_{B/O} = \frac{30\pi}{3.5}$, $\omega_{B/O} = \frac{60}{7} \pi \text{ rad/s}$

$n_{B/O} = \frac{60}{2\pi} \omega_{B/O}$, $n_{B/O} = \frac{60}{2\pi} \ast \frac{60}{7} \pi$, $n_{B/O} = \frac{1800}{7} \text{ dev/dakika}$, $n_{B/O} = 257.1 \text{ dev/dakika}$
SORU 2) Şekildeki gibi bükümüş ABCD cismi mafsal noktaları olan A ve D den eksen etrafında \(\omega = 2,5 \text{ rad/s (sabit)} \) açısal hızı dönüyor. Aynı anda bir P bileği cismin AB uzantısı üzerinde \(s = 10 + 8 \sin(\frac{\pi}{6} t) \) bağntısı ile hareket ediyor. \(t = 1 \) de sistemin verilen konumdan geçtiği ve C noktasının hızının yukarı doğru olduğu bilindiğine göre P bileğiinin hızını ve ivmesini bulunuz.

Çözüm:

\[
\vec{V}_p = \vec{V}_{bag} + \vec{V}_{sür} , \quad \vec{V}_{bag} = \frac{ds}{dt} \vec{i} , \quad \vec{V}_{sür} = \vec{\omega} \times \vec{AP} \\
\vec{\omega} = \omega \vec{U}_{DA} , \quad \vec{U}_{DA} = \frac{DA}{|DA|} , \quad \vec{U}_{DA} = \frac{-20\vec{i} + 12\vec{j} + 9\vec{k}}{\sqrt{20^2 + 12^2 + 9^2}} , \quad \vec{U}_{DA} = \frac{-20}{25}\vec{i} + \frac{12}{25}\vec{j} + \frac{9}{25}\vec{k} \\
\vec{\omega} = -2\vec{i} + 1,2\vec{j} + 0,9\vec{k} , \quad \vec{AP} = 14\vec{i} , \quad \vec{V}_{sür} = 12,6\vec{j} - 16,8\vec{k} \\
\frac{ds}{dt} = \frac{8\pi}{6} \cos\frac{\pi}{6} t , \quad t = 1 \ \text{de} \ \frac{ds}{dt} = 3,63 \text{ cm/s} , \quad \vec{V}_{bag} = 3,63\vec{i} \\
\vec{V}_p = 3,63\vec{i} + 12,6\vec{j} - 16,8\vec{k} \\
\vec{a}_p = \vec{a}_{bag} + \vec{a}_{sür} + \vec{a}_{cor} , \quad \vec{a}_{bag} = \frac{d^2s}{dt^2} \vec{i} , \quad \vec{a}_{sür} = \alpha \vec{k} \times \vec{AP} + \omega \vec{k} \times \vec{V}_{sür} , \quad \vec{a}_{cor} = 2\vec{\omega} \times \vec{V}_{bag} \\
\frac{d^2s}{dt^2} = \frac{8\pi}{36} \sin\frac{\pi}{6} t , \quad t = 1 \ \text{de} \ \frac{d^2s}{dt^2} = -1,1 \text{ cm/s}^2 , \quad \vec{a}_{bag} = -1,1\vec{i} \\
\vec{a} = 0 \ (\omega \ \text{sabit olduğundan}) , \quad \vec{a}_{sür} = (-2\vec{i} + 1,2\vec{j} + 0,9\vec{k}) \times (12,6\vec{j} - 16,8\vec{k}) \\
\vec{a}_{sür} = -31,5\vec{i} - 33,6\vec{j} - 25,2\vec{k} \\
\vec{a}_{cor} = (-4\vec{i} + 2,4\vec{j} + 1,8\vec{k}) \times 3,63\vec{i} , \quad \vec{a}_{cor} = 6,534\vec{j} - 8,712\vec{k} \\
\vec{a}_p = -32,6\vec{i} - 27,07\vec{j} - 33,91\vec{k}
SORU 3) Ağrılığı \(W_C \) olan bir C bileziği boyu \(L \) ve ağrılığı \(W \) olan üniform ve ince bir AB çubuğuna rüjid olarak bağlanmıştır. Çubuk şekilde görülen hareketsiz durumdan serbest hale geçirecek olursa A daki tepkinin \(W_C \) den bağımsız olabilmesi için \(\frac{d}{L} \) oranı ne olmalıdır?

![Diagram](image)

Çözüm:

\[
\sum F_y = ma_y \Rightarrow W_C - F = ma_p
\]

\[
m_C g - ma_p = F
\]

Eğer \(a_p = g \) olursa \(F = 0 \) olur ve A mafsalma \(W_C \) den dolayı ek yük gelmez.

\[
\sum M_A = I_A \alpha \Rightarrow \alpha = \frac{\sum M_A}{I_A}, \quad \sum M_A = W \frac{L - 2}{2}, \quad I_A = \frac{1}{3} mL^2
\]

\[
\alpha = \frac{mg}{2L}, \quad \frac{3g}{2L}, \quad a_p = \alpha * d, \quad a_p = \frac{3g}{2L} * d = g \Rightarrow \frac{d}{L} = \frac{2}{3}
\]
SORU 1) ABCD Üçgen plakası xoy düzleminde hareket ediyor. Şekilde gösterildiği anda B ve C noktalarının hızları verildiği gibi ise
a) Plakanın açısal hızını
b) A ve D noktalarının hızlarını bulunuz.

Çözüm :

a) \(\vec{V}_B = \vec{V}_C + \vec{V}_{BC} \)
\(\vec{V}_B = -5\hat{i}, \quad \vec{V}_C = 5\hat{i} + V_{C_y}\hat{j}, \quad \vec{V}_{BC} = \omega \hat{k} \times \overrightarrow{CB}, \quad \overrightarrow{CB} = -5\hat{i} + 5\hat{j} \)
\(\vec{V}_{BC} = -5\omega\hat{i} - 5\omega\hat{j}, \quad \vec{V}_B = -5\hat{i} + (5 - 5\omega)\hat{i} + (V_{C_y} - 5\omega)\hat{j} \Rightarrow \omega = 2 \text{ rad/s} \)

b) \(V_{C_y} = 10 \text{ m/s}, \quad \vec{V}_C = 5\hat{i} + 10\hat{j} \)
\(\vec{V}_A = \vec{V}_C + \vec{V}_{AC} \), \(\vec{V}_{AC} = \omega \times \overrightarrow{CA} \), \(\vec{V}_{AC} = 2\hat{k} \times -5\hat{i}, \quad \vec{V}_{AC} = -10\hat{j} \)
\(\vec{V}_A = 5\hat{i} \)
\(\vec{V}_D = \vec{V}_A + \vec{V}_{DA} \), \(\vec{V}_{DA} = \omega \times \overrightarrow{AD} \), \(\vec{V}_{DA} = 2\hat{k} \times -5\hat{j}, \quad \vec{V}_{DA} = 10\hat{i} \)
\(\vec{V}_D = 15\hat{i} \)
SORU 2) O Pimi etrafında dönen OC çubuğu içindeki kanalda AB çubuğuna sabitlenmiş P pimi hareket etmektedir. AB çubuğunun B noktası düşey doğrultu üzerinde A noktası ise yatay doğrultuda sağa doğru \(V_A = 0,6 \text{ m/s} \) hız ve ters yönde \(a_A = 7,5 \text{ m/s}^2 \) ivmesi ile hareket ettiği göre OC çubuğunun a) açısal hızı b) açısal ivmesini bulunuz.

Çözüm :

a) \(\ddot{V}_P = \ddot{V}_{bağı} + \ddot{V}_{sür} \), \(\ddot{V}_{bağı} = V_{bağı} \ddot{j} \), \(\ddot{V}_{sür} = \omega_{OC} \ddot{k} \wedge \overline{OP} \), \(\overline{OP} = \overline{OP} j \), \(\overline{OP} = 0,6 \text{ } \overline{0,9} \text{ } \overline{0,9} \Rightarrow \)
\[\overline{OP} = 0,6 \text{ } \text{m} \text{ } \overline{0,6} \text{ } \overline{0,6} \text{ } \overline{j}, \quad \ddot{V}_{sür} = \omega_{OC} \ddot{k} \wedge 0,6 \ddot{j}, \quad \ddot{V}_{bağı} = -0,6 \omega_{OC} \ddot{i} + V_{bağı} \ddot{j}, \quad \ddot{V}_P = \ddot{V}_A + \ddot{V}_{P/A}, \quad \ddot{V}_A = 0,6 \ddot{i}, \quad \ddot{V}_{B/A} = \omega_{AB} \ddot{k} \wedge \overline{AB}, \quad \overline{AB} = 0,9 \ddot{i} + 0,9 \ddot{j}, \quad \ddot{V}_{P/A} = -0,9 \omega_{AB} \ddot{i} + 0,9 \omega_{AB} \ddot{j}, \]
\[\ddot{V}_B = V_B \ddot{j} = (0,6 - 0,9 \omega_{AB}) \ddot{i} + 0,9 \omega_{AB} \ddot{j} \Rightarrow \]
\[\ddot{V}_{P/A} = \omega_{AB} \ddot{k} \wedge \overline{AP}, \quad \overline{AB} = 0,6 \ddot{i} + 0,9 \ddot{j}, \quad \ddot{V}_{P/A} = \frac{2}{3} \ddot{k} \wedge (0,6 \ddot{i} + 0,9 \ddot{j}), \]
\[\ddot{V}_{bağı} = 0,4 \ddot{j}, \quad \ddot{V}_{sür} = 0,2 \ddot{i}, \quad \ddot{V}_{B/A} = -0,6 \ddot{i} + 0,6 \ddot{j} \]

b) \(\ddot{a}_P = \ddot{a}_{bağı} + \ddot{a}_{sür} + \ddot{a}_{cor.} \), \(\ddot{a}_{bağı} = a_{bağı} \ddot{j} \), \(\ddot{a}_{sür} = \alpha_{OC} \ddot{k} \wedge \overline{OP} + \omega_{OC} \ddot{k} \wedge \ddot{V}_{sür} \)
\[\ddot{a}_{cor.} = 2 \omega_{OC} \ddot{k} \wedge \ddot{V}_{bağı}, \quad \ddot{a}_{sür} = \alpha_{OC} \ddot{k} \wedge 0,6 \ddot{j} - \frac{1}{3} \ddot{k} \wedge 0,2 \ddot{i}, \quad \ddot{a}_{sür} = -0,6 \alpha_{OC} \ddot{i} - \frac{0,2}{3} \ddot{j} \]
\[\ddot{a}_{cor.} = -\frac{2}{3} \ddot{k} \wedge 0,4 \ddot{j}, \quad \ddot{a}_{cor} = \frac{0,8}{3} \ddot{i}, \quad \ddot{a}_p = \left(\frac{0,8}{3} - 0,6 \alpha_{OC} \right) \ddot{i} + \left(a_{bağı} - \frac{0,2}{3} \right) \ddot{j} \]
\[\ddot{a}_b = \ddot{a}_A + \ddot{a}_{B/A}, \quad \ddot{a}_A = -7,5 \ddot{i}, \quad \ddot{a}_{B/A} = \alpha_{AB} \ddot{k} \wedge \overline{AB} + \omega_{AB} \ddot{k} \wedge \ddot{V}_{B/A} \]
\[\ddot{a}_{B/A} = \alpha_{AB} \ddot{k} \wedge (0,9 \ddot{i} + 0,9 \ddot{j}) + \frac{2}{3} \ddot{k} \wedge (-0,6 \ddot{i} + 0,6 \ddot{j}), \quad \ddot{a}_{B/A} = (-0,4 - 0,9 \alpha_{AB}) \ddot{i} + (-0,4 + 0,9 \alpha_{AB}) \ddot{j} \]
\[\ddot{a}_b = a_{B/A} \ddot{j} = (-7,9 - 0,9 \alpha_{AB}) \ddot{i} + (-0,4 + 0,9 \alpha_{AB}) \ddot{j} \Rightarrow \alpha_{AB} = -79/9 \text{ rad/s}^2, \quad a_{B/A} = -8,3 \text{ m/s}^2 \]
\[\ddot{a}_p = \ddot{a}_A + \ddot{a}_{P/A}, \quad \ddot{a}_{P/A} = \alpha_{AB} \ddot{k} \wedge \overline{AP} + \omega_{AB} \ddot{k} \wedge \ddot{V}_{P/A} \]
\[\ddot{a}_{P/A} = \frac{-79}{9} \ddot{k} \wedge (0,6 \ddot{i} + 0,6 \ddot{j}) + \frac{2}{3} \ddot{k} \wedge (-0,4 \ddot{i} + 0,4 \ddot{j}), \quad \ddot{a}_{P/A} = 5 \ddot{i} - \frac{83}{15} \ddot{j} \]
\[\ddot{a}_p = -2,5 \ddot{i} - \frac{83}{15} \ddot{j} = \left(\frac{0,8}{3} - 0,6 \alpha_{OC} \right) \ddot{i} + \left(a_{bağı} - \frac{0,2}{3} \right) \ddot{j} \Rightarrow \alpha_{OC} = \frac{83}{18} = 4,611 \text{ rad/s}^2 \]
SORU 3) Şekildeki \(L = 1,2 \) metre uzunluğunda ve \(m = 2,5 \) kg kütleli homojen AB çubuğunun A ucu \(\theta = 30^\circ \) açılı bir eğik düzlem üzerinde hareket etmektedir. Çubuk düşey durumda ilk hızsiz harekete birakıldığına göre bu anda a) çubuğun açısal ivmesini b) A noktasının ivmesini c) A daki tepki kuvvetini bulunuz.

Çözüm :

\[
\sum F_x = ma_{gx} \quad \Rightarrow \quad R_A \sin \theta = m a_{gx} \\
\sum F_y = ma_{gy} \quad \Rightarrow \quad mg - R_A \cos \theta = m a_{gy}
\]

\[
\sum M_G = I_g \alpha \quad \Rightarrow \quad \frac{L}{2} R_A \sin \theta = I_g \alpha , \quad I_g = \frac{1}{12} m L^2 , \quad \frac{L}{2} R_A \sin \theta = \frac{1}{12} m L^2 \alpha
\]

\[
6 R_A \sin \theta = mL \alpha
\]

\[
\ddot{a}_c = \ddot{a}_A + \ddot{a}_{G/A} , \quad \ddot{a}_A = a_A \cos \theta \hat{i} + a_A \sin \theta \hat{j} , \quad \ddot{a}_{G/A} = \alpha \dddot{k} \wedge \overrightarrow{AG} + \omega \ddot{k} \wedge \ddot{V}_{G/A} \]

\[
\omega = 0 \quad \text{olduğundan} \quad \ddot{a}_{G/A} = \alpha \ddot{k} \wedge \frac{L}{2} \dddot{j} , \quad \ddot{a}_{G/A} = -\frac{L}{2} \alpha \hat{i} ,
\]

\[
\ddot{a}_c = (a_A \cos \theta - \frac{L}{2} \alpha) \hat{i} + a_A \sin \theta \hat{j}
\]

\[
R_A \sin \theta = m(a_A \cos \theta - \frac{L}{2} \alpha)
\]

\[
m g - R_A \cos \theta = m a_A \sin \theta
\]

\[
6 R_A \sin \theta = mL \alpha
\]

\[
R_A \cos \theta = m(g - \frac{2}{3} L \alpha \tan \theta)
\]

\[
\tan \theta = \frac{m L \alpha}{6m(g - \frac{2}{3} L \alpha \tan \theta)}
\]

\[
\varphi = 12,137 \text{ rad/s}^2 \\
\alpha = 11,21 \text{ m/s}^2 \\
R_A = 12,137 \text{ N}
\]

\[
\frac{L}{2} \alpha = \frac{m L \alpha}{3} \cos \theta
\]

\[
\frac{L}{2} \alpha = \frac{6 g \tan \theta}{(1 + 4 \tan^2 \theta) L}
\]
SORU 1) Bir A maddesel noksasının hareketi ρ yarıçaplı bir silindir üzerindeki helis eğrisinde $\theta = ct^2$ ve $z = \frac{cht^2}{2\pi}$ (burada c sabit, h ise helisin adıdır.) bağıntısı ile veriliyor. Hız ve ivmenin şiddetine ait bağıntıları verilenler cinsinden bulunuz.

$$\vec{V} = \rho \vec{e}_\rho + \rho \dot{\theta} \vec{e}_\theta + \dot{z} \vec{k}, \quad \vec{a} = (\ddot{\rho} - \rho \dot{\theta}^2) \vec{e}_\rho + (\rho \ddot{\theta} + 2\dot{\rho} \dot{\theta}) \vec{e}_\theta + \ddot{z} \vec{k}$$

Çözüm:

$$\dot{\rho} = \text{sabit}, \quad \rho = 0, \quad \dot{\rho} = 0$$

$$\theta = ct^2, \quad \dot{\theta} = 2ct, \quad \ddot{\theta} = 2c$$

$$z = \frac{cht^2}{2\pi}, \quad \dot{z} = \frac{cht}{\pi}, \quad \ddot{z} = \frac{ch}{\pi}$$

$$\vec{V} = 2\rho c t \vec{e}_\theta + \frac{cht}{\pi} \vec{k}, \quad |\vec{V}| = \sqrt{(2\rho c t)^2 + \left(\frac{cht}{\pi}\right)^2}, \quad |\vec{V}| = \sqrt{4\rho^2 c^2 t^2 + \frac{c^2 h^2 t^2}{\pi^2}}$$

$$|\vec{V}| = \frac{ct}{\pi} \sqrt{4\pi^2 \rho^2 + h^2}$$

$$\ddot{\rho} = -4\rho c^2 t^2 \ddot{\rho} + 2\rho c \ddot{e}_\theta + \frac{ch}{\pi} \ddot{k}, \quad \ddot{a} = \sqrt{(-4\rho c^2 t^2)^2 + (2\rho c)^2 + \left(\frac{ch}{\pi}\right)^2}$$
SORU 2) Bir A kamyonu 54 km/saat sabit hız ile ve bir B otomobili 90 km/saat sabit hız ile şekilde gösterilen yollarda gitmektedir. Kamyon geçidin altından geçtiğinden beş saniye sonra B otomobili geçtiğin üstünden geçiyor.
a) B otomobilinin A kamyonuna göre başlangıç hızı
b) Sekiz saniyelik sürede B otomobilin A kamyonuna göre konumındaki değişim
c) Kamyon geçtiğin altından geçtiğinden sekiz saniye sonra kamyon ile otomobil arasındaki uzaklığı bulunuz.

 genetically generated image of the text:

\[0.1133 \text{ km} \quad \left| \vec{r}_{B/A} \right| = 113,3 \text{ m} \]

\[0.1288 \hat{i} + 0.1 \hat{j} \quad \left| \vec{r}_{B/A} \right| = 0.1626 \text{ km} \quad \left| \vec{r}_{B/A} \right| = 162,6 \text{ m} \]
SORU 3) 2 cm Yarıçaplı bir disk 2 paralel plaka arasında kaymadan yuvarlanma hareketi yapıyor. Plakaların hareketleri birbirinin aksi yöündedir. Bir t anında plakaların hız ve ivmeleri şekilde verildiğine göre bu an için diskin
a) açısal hızını b) açısal ivmesini bulunuz.

Çözüm:

a)
\[\dot{V}_{B/A} = \dot{V}_B - \dot{V}_A, \quad \dot{V}_B = -6 \dot{i}, \quad \dot{V}_A = 2 \dot{i}, \quad \dot{V}_{B/A} = -8 \dot{i} \]
\[\ddot{V}_{B/A} = \ddot{\omega} \wedge \overrightarrow{AB}, \quad \ddot{\omega} = \omega \ddot{k}, \quad \dddot{AB} = 4 \ddot{j}, \quad \ddot{V}_{B/A} = \omega \dddot{k} \wedge 4 \ddot{j}, \quad \ddot{V}_{B/A} = -4\omega \ddot{i} \]
\[\dddot{V}_{B/A} = -8 \ddot{i} = -4\omega \ddot{i} \quad \Rightarrow \quad -8 = -4\omega \quad \Rightarrow \quad \omega = 2 \text{ rad/s} \]

b)
\[\dddot{a}_{B/A} = \dddot{a}_B - \dddot{a}_A \]
\[(\dddot{a}_{B/A})_T = (\dddot{a}_B)_T - (\dddot{a}_A)_T \]
\[(\dddot{a}_B)_T = -2,5 \ddot{i}, \quad (\dddot{a}_A)_T = 0,5 \ddot{i}, \quad (\dddot{a}_{B/A})_T = -3 \ddot{i} \]
\[(\dddot{a}_{B/A})_T = \dddot{\alpha} \wedge \overrightarrow{AB}, \quad \dddot{\alpha} = \alpha \dddot{k}, \quad (\dddot{a}_{B/A})_T = \alpha \dddot{k} \wedge 4 \ddot{j}, \quad (\dddot{a}_{B/A})_T = -4\alpha \ddot{i} \]
\[(\dddot{a}_{B/A})_T = -3 \ddot{i} = -4\alpha \ddot{i} \quad \Rightarrow \quad -3 = -4\alpha \quad \Rightarrow \quad \alpha = \frac{3}{4}, \quad \alpha = 0,75 \text{ rad/s}^2 \]
SORU 1) A üç naktasi yatay doğrultuda hareket eden 0,9 metre uzunlugundaki bir AB çubugunun B ucu R = 0,25 metre yuvralarna yarapi olan bir diske mafsallidir. Diskin kule merkezi saa doğru V_G = 1,5 m/s (sabit) hız ile hareket ediyor. β = 30° için A noktasının a) hızını b) ivmesini bulunuz.

\[
\begin{align*}
V_A &= V_B + \vec{V}_{A/B}, \quad V_B = V_G + \vec{V}_{B/G}, \quad V_G = 1,5 \cdot \hat{i} \\
\vec{V}_{B/G} &= -\omega_G \cdot \vec{k} \wedge \overline{GB} \\
\overline{GB} &= 0,25 \left(\sin 30^\circ \cdot \hat{i} + \cos 30^\circ \cdot \hat{j} \right), \quad \overline{GB} = 0,125 \cdot \hat{i} + 0,125 \sqrt{3} \cdot \hat{j} \\
V_G &= 0,25 \omega_G \quad \Rightarrow \quad \omega_G = 6 \text{ rad/s} \quad \Rightarrow \quad \vec{V}_{B/G} = -6 \cdot \hat{k} \wedge (0,125 \cdot \hat{i} + 0,125 \sqrt{3} \cdot \hat{j}) \\
V_{B/G} &= 0,75 \sqrt{3} \cdot \hat{j} - 0,75 \cdot \hat{j}, \quad V_B = (1,5 + 0,75 \sqrt{3}) \cdot \hat{i} - 0,75 \cdot \hat{j} \\
\vec{V}_{A/B} &= \omega_{AB} \cdot \vec{k} \wedge \overline{BA} \quad \Rightarrow \quad \overline{BA} = x_{A/B} \cdot \hat{i} + y_{A/B} \cdot \hat{j}, \quad y_{A/B} = -0,25 + 0,25 \times \cos 30^\circ \\
y_{A/B} &= -0,4665 \text{ m}, \quad x_{A/B} = -\sqrt{\left(\frac{AB}{2}\right)^2 - y_{A/B}^2}, \quad x_{A/B} = -\sqrt{(0,9)^2 - (0,4665)^2} = -0,7697 \text{ m} \\
\overline{BA} &= -0,7697 \cdot \hat{i} - 0,4665 \cdot \hat{j} \quad \Rightarrow \quad \vec{V}_{A/B} = 0,4665 \omega_{AB} \cdot \hat{i} - 0,7697 \omega_{AB} \cdot \hat{j} \\
1,5 + 0,75 \sqrt{3} + 0,4665 \omega_{AB} &= V_A \quad \Rightarrow \quad \omega_{AB} = -0,9745 \text{ rad/s} \\
-0,75 - 0,7697 \omega_{AB} &= 0 \quad \Rightarrow \quad V_A = 2,3444 \text{ m/s} \\
\end{align*}
\]

b)
\[
\begin{align*}
\vec{a}_A &= \vec{a}_B + \vec{a}_{A/B}, \quad \vec{a}_B = \vec{a}_G + \vec{a}_{B/G}, \quad \vec{a}_G = \overrightarrow{0} \quad (G \ \text{nın hızı sabit olduğundan}) \\
\vec{a}_{B/G} &= \alpha_{G} \cdot \vec{k} \wedge \overline{GB} - \omega_{G} \cdot \vec{k} \wedge \overline{V}_{B/G}, \quad \alpha_{G} = 0 \quad (\omega_{G} \ \text{sabit olduğundan}) \\
\vec{a}_{B/G} &= -6 \cdot \hat{k} \wedge (0,75 \sqrt{3} \cdot \hat{i} - 0,75 \cdot \hat{j}) \quad \Rightarrow \quad \alpha_{B/G} = -4,5 \cdot \hat{i} - 4,5 \sqrt{3} \cdot \hat{j} \\
\vec{a}_{A/B} &= \alpha_{AB} \cdot \vec{k} \wedge \overline{BA} + \omega_{AB} \cdot \vec{k} \wedge \overline{V}_{A/B}, \quad \vec{V}_{A/B} = 0,4665 \cdot \left(-0,9745\right) \cdot \hat{i} - 0,7697 \cdot \left(-0,9745\right) \cdot \hat{j} \\
\vec{V}_{A/B} &= -0,4546 \cdot \hat{i} + 0,75 \cdot \hat{j} \quad \Rightarrow \quad \alpha_{A/B} = -0,4546 \cdot \hat{i} - 0,4546 \cdot \hat{j} \\
\vec{a}_{A/B} &= \alpha_{AB} \cdot \vec{k} \wedge (-0,7697 \cdot \hat{i} - 0,4665 \cdot \hat{j}) - 0,9745 \cdot \vec{k} \wedge (-0,4546 \cdot \hat{i} + 0,75 \cdot \hat{j}) \\
\vec{a}_{A/B} &= (0,4665 \alpha_{AB} + 0,731) \cdot \hat{i} + (-0,77 \alpha_{AB} + 0,443) \cdot \hat{j} \\
\vec{a}_A &= \alpha_A \cdot \hat{i} = (0,4665 \alpha_{AB} + 0,731 - 4,5) \cdot \hat{i} + (-0,77 \alpha_{AB} + 0,443 - 4,5 \sqrt{3}) \cdot \hat{j} \\
0,4665 \alpha_{AB} + 0,731 - 4,5 &= a_A \quad \Rightarrow \quad \alpha_{AB} = -9,54 \text{ rad/s}^2 \\
-0,77 \alpha_{AB} + 0,443 - 4,5 \sqrt{3} &= 0 \quad \Rightarrow \quad a_A = -8,22 \text{ m/s}^2
\end{align*}
\]
SORU 2) Doğrusal hava kanallı bir kompresör $\omega = 4\pi \text{ rad/s}$ (sabit) açısal hızı ile z eksemi doğrultusundaki O aksı etrafında şekilde gösterilen yönde dönmediktir. Aynı anda kompresörün üzerindeki doğrusal kanallarda hava tanecikleri $V_{\text{bağ}} = 2 \text{ m/s}$ (sabit) bağlı hız ile hareket etmektedir. Şekilde gösterilen konum için (P, y eksenleri üzerinde ve $\overline{OP} = 0.5 \text{ metre}$) P de bulunan hava taneciklerinin a) hızını b) ivmesini bulunuz.

![Diagram](image)

Çözüm:

a) $\ddot{V}_p = \ddot{V}_{\text{bağ}} + \ddot{V}_{\text{sür}}.$

$\ddot{V}_{\text{bağ}} = V_{\text{bağ}} \cos 45^\circ \hat{i} + V_{\text{bağ}} \sin 45^\circ \hat{j}$, $\ddot{V}_{\text{bağ}} = \sqrt{2} \hat{i} + \sqrt{2} \hat{j}$

$\ddot{V}_{\text{sür}} = -\omega \vec{k} \times \overline{OP}$, $\overline{OP} = 0.5 \hat{j}$, $\ddot{V}_{\text{sür}} = -4\pi \vec{k} \times 0.5 \hat{j}$, $\ddot{V}_{\text{sür}} = 2\pi \hat{i}$

$\ddot{V}_p = (\sqrt{2} + 2\pi) \hat{i} + \sqrt{2} \hat{j}$, $\ddot{V}_p = 7,7 \hat{i} + 1,414 \hat{j}$, $|\dddot{V}_p| = 7,83 \text{ m/s}$

b) $\dddot{a}_p = \dddot{a}_{\text{bağ}} + \dddot{a}_{\text{sür}} + \dddot{a}_{\text{cor}}.$

$\dddot{a}_{\text{bağ}} = 0$ ($V_{\text{bağ}} = \text{sabit}$ olduğundan)

$\dddot{a}_{\text{sür}} = \alpha \vec{k} \times \overline{OP} - \omega \vec{k} \times \dot{V}_{\text{sür}}$, $\alpha = 0$ ($\omega = \text{sabit}$ olduğundan)

$\dddot{a}_{\text{sür}} = -4\pi \vec{k} \times 2\pi \hat{i}$, $\dddot{a}_{\text{sür}} = -8\pi^2 \hat{j}$

$\dddot{a}_{\text{cor}} = 2\omega \times \dddot{V}_{\text{bağ}}$, $\dddot{a}_{\text{cor}} = -2\omega \vec{k} \times \ddot{V}_{\text{bağ}}$, $\dddot{a}_{\text{cor}} = -8\pi \vec{k} \times (\sqrt{2} \hat{i} + \sqrt{2} \hat{j})$

$\dddot{a}_{\text{cor}} = 8\pi \sqrt{2} \hat{i} - 8\pi \sqrt{2} \hat{j}$

$\dddot{a}_p = 8\pi \sqrt{2} \hat{i} - 8\pi(\pi + \sqrt{2}) \hat{j}$, $\dddot{a}_p = 35,54 \hat{i} - 114,5 \hat{j}$, $|\dddot{a}_p| = 119,9 \text{ m/s}^2$
SORU 3: 200 Newton ağırlıktaki doğruşal hareket edebilen bir A vagonuna bağlı A da mafsallı 200 Newton ağırlığı ve 152 cm uzunluğundaki bir AB çubuğu $\theta = 30^\circ$ ikten ilk hız harekete bırakıyor. Bu anda sürtünmeleri ihmal ederek, a) AB çubuğunun açısal ivmesini b) A vagonunun ivmesini bulunuz.

Çözüm:

a)

$$\sum F_x = m_a a_x \Rightarrow R_{Ax} = m_a a_A \Rightarrow a_A = R_{Ax} / m_A$$

$$\sum F_y = m_a g - R_{Ay} \Rightarrow a_y = \frac{R_{Ay}}{m_A}$$

$$\sum M_A = I_G \alpha, \; \sum \vec{F} = m \vec{a}$$

$$\sum M_A = R_{Ax} \frac{L}{2} \cos 30^\circ - R_{Ay} \frac{L}{2} \sin 30^\circ$$

$$I_G = \frac{1}{12} m_c L^2$$

$$R_{Ax} \frac{L}{2} \cos 30^\circ - R_{Ay} \frac{L}{2} \sin 30^\circ = \frac{1}{12} m_c L^2 \alpha$$

$$\sqrt{3} R_{Ax} - R_{Ay} = \frac{1}{3} m_c L \alpha \Rightarrow R_{Ay} = \sqrt{3} R_{Ax} - \frac{1}{3} m_c L \alpha$$

$$\sum F_x = m_c a_{Gx} \Rightarrow -R_{Ax} = m_c a_{Gx}$$

$$\sum F_y = m_c a_{Gy} \Rightarrow R_{Ay} + m_c g = m_c a_{Gy}$$

$$\vec{a}_G = \vec{a}_A + \vec{a}_{G/A}, \; \vec{a}_A = a_i \hat{i}, \; \vec{a}_{G/A} = a_i \vec{AG} + \vec{\omega} \times \vec{\Omega}_{G/A}, \; \vec{\omega} = \vec{0} \; \; (\text{sistem ilk hız old.})$$

$$\vec{a}_{G/A} = -\alpha \hat{k} \wedge \vec{AG}, \; \vec{AG} = -\frac{L}{2} \sin 30^\circ \hat{i} + \frac{L}{2} \cos 30^\circ \hat{j}, \; \vec{a}_{G/A} = \frac{\sqrt{3}}{4} L \alpha \hat{i} + \frac{1}{4} L \alpha \hat{j}$$

$$\vec{a}_G = (a_i + \frac{\sqrt{3}}{4} L \alpha) \hat{i} + \frac{1}{4} L \alpha \hat{j} \Rightarrow a_{Gx} = a_i + \frac{\sqrt{3}}{4} L \alpha, \; a_{Gy} = \frac{1}{4} L \alpha$$

$$-R_{Ax} = m_c (a_i + \frac{\sqrt{3}}{4} L \alpha), \; R_{Ay} + m_c g = m_c \frac{1}{4} L \alpha \Rightarrow \sqrt{3} R_{Ax} - \frac{1}{3} m_c L \alpha + m_c g = m_c \frac{1}{4} L \alpha$$

$$R_{Ax} = \frac{1}{\sqrt{3}} \left(\frac{7}{12} m_c L \alpha - m_c g \right), \; R_{Ay} = m_c \left(\frac{R_{Ax}}{m_A} + \frac{\sqrt{3}}{4} L \alpha \right) \Rightarrow -R_{Ax} (1 + \frac{m_c}{m_A}) = m_c \frac{\sqrt{3}}{4} L \alpha$$

$$\frac{1}{\sqrt{3}} (m_c g - \frac{7}{12} m_c L \alpha) (1 + \frac{m_c}{m_A}) = m_c \frac{\sqrt{3}}{4} L \alpha \Rightarrow \frac{4}{3} (\frac{g}{L} - \frac{7}{12} \alpha) (1 + \frac{m_c}{m_A}) = \alpha$$

$$\frac{4}{3} (\frac{g}{L} - \frac{7}{12} \alpha) (1 + \frac{m_c}{m_A}) = \alpha$$
Soru 1) A, B ve C dişlileri merkezlerinden bir ABC çubuğuuna mafsalla bağlanmıştır.
$r_A = 3r_B = 3r_C$ olduğu bilindiğine ve A dişlisi dönmediğine göre ABC çubuğu saat ibreleri yönünde $n_{ABC} = 10$ devir / dakika ile döndüğü takdirde B ve C dişlerinin açısal hızlarını devir / dakika cinsinden bulunuz.

Çözüm:

devir / dakika cinsinden bulunuz.

\[
\omega_{ABC} = \frac{2\pi}{60} n_{ABC} \quad , \quad \omega_{ABC} = \frac{2\pi}{60} 10 \quad , \quad \omega_{ABC} = \frac{\pi}{3} \text{ rad / s} \quad , \quad V_B = \overline{AB} \cdot \omega_{ABC}
\]

\[
V_B = (r_A + r_B) \omega_{ABC} \quad , \quad V_B = (3r_B + r_B) \frac{\pi}{3} \quad , \quad V_B = \frac{4\pi}{3} r_B \quad , \quad V_B = 0 \quad \text{olduğundan}
\]

\[
V_B = \frac{I_B}{I_B} B \cdot \omega_B \Rightarrow \omega_B = \frac{V_B}{I_B B} \quad , \quad \omega_B = \frac{4\pi}{3} \frac{r_B}{r_B} \quad , \quad \omega_B = \frac{4\pi}{3} \text{ rad / s} \quad , \quad n_B = \frac{60}{2\pi} \omega_B
\]

\[
n_B = \frac{60}{2\pi} \frac{4\pi}{3} \quad , \quad n_B = 40 \text{ devir / dakika}
\]

\[
V_{IC/C} = r_C \omega_C \quad , \quad V_C = V_{IC} + V_{C/C} \quad , \quad V_C = \overline{AC} \cdot \omega_{ABC} \quad , \quad V_C = (3r_A + 2r_B + r_C) \frac{\pi}{3}
\]

\[
V_C = 2\pi r_B \quad , \quad V_{IC} = \frac{I_C}{I_B C} \cdot \omega_B \quad , \quad V_{IC} = 2r_B \frac{4\pi}{3} \quad , \quad V_{IC} = \frac{8\pi}{3} r_B \quad , \quad V_{C/C} = -V_{IC/C} = -r_C \omega_C
\]

\[
V_C = 2\pi r_B = \frac{8\pi}{3} r_B - r_C \omega_C \Rightarrow \omega_C = \frac{2\pi}{3} \text{ rad / s} \quad , \quad n_C = \frac{60}{2\pi} \omega_C \quad , \quad n_C = \frac{60}{2\pi} 2\pi \quad /3
\]

\[
n_C = 20 \text{ devir / dakika}
\]
SORU 2) Çembersel hava kanallı bir kompresör \(\omega \) (sabit) açısal hız ile \(z \) ekseni doğrultusundaki \(O \) aksı etrafında şekilde gösterilen yönde dönmektedir. Aynı anda kompresörün üzerindeki doğrusal kanallarda hava tanecikleri \(\varphi \) sabit hız şiddeti ile hareket etmektedir. Şekilde gösterilen konum için \((P, y \text{ ekseninde ve } \overline{OP} = r) \) \(P \) de bulunan hava taneciklerinin hızını ve ivmesini bulunuz. (Çembersel kanalın yarıçapı = \(\rho \))

\[\mathbf{V}_p = (r \omega + V_{bağı} \cos \phi) \mathbf{i} + V_{bağı} \sin \phi \mathbf{j}, \quad \mathbf{V}_sür = \omega \mathbf{k} \]

\[\mathbf{OP} = r \mathbf{j}, \quad \mathbf{V}_phi = -\omega \mathbf{k}, \quad \mathbf{V}_sür = -\omega \mathbf{k} \times r \mathbf{j}, \quad \mathbf{V}_sür = r \omega \mathbf{i}\]

\[\mathbf{V}_p = (r \omega + V_{bağı} \cos \phi) \mathbf{i} + V_{bağı} \sin \phi \mathbf{j}, \quad \mathbf{V}_p = (r \omega + 2 \cos \phi) \mathbf{i} + 2 \sin \phi \mathbf{j}\]

\[\mathbf{a}_p = \mathbf{a}_{bağı} + \mathbf{a}_{sür} + \mathbf{a}_{cor}, \quad \mathbf{a}_{bağı} = -\frac{V_{bağı}^2}{\rho} \sin \phi \mathbf{i} + \frac{V_{bağı}^2}{\rho} \cos \phi \mathbf{j}\]

\[\mathbf{a}_{sür} = \alpha \mathbf{k} \mathbf{k} - \omega \mathbf{k} \times \mathbf{V}_sür - \mathbf{a}_{sür} = -r \omega^2 \mathbf{j}\]

\[\mathbf{a}_{cor} = -2 \omega \mathbf{k} \times \mathbf{V}_bağı, \quad \mathbf{a}_{cor} = -2 \omega \mathbf{k} \times (V_{bağı} \cos \phi \mathbf{i} + V_{bağı} \sin \phi \mathbf{j})\]

\[\mathbf{a}_{cor} = 2 \omega V_{bağı} \sin \phi \mathbf{i} - 2 \omega V_{bağı} \cos \phi \mathbf{j}\]

\[\mathbf{a}_p = (2 \omega V_{bağı} - \frac{V_{bağı}^2}{\rho}) \sin \phi \mathbf{i} - [r \omega^2 + (2 \omega V_{bağı} - \frac{V_{bağı}^2}{\rho}) \cos \phi] \mathbf{j}\]

\[\mathbf{a}_p = 4(\omega - \frac{1}{\rho}) \sin \phi \mathbf{i} - [r \omega^2 + 4(\omega - \frac{1}{\rho}) \cos \phi] \mathbf{j}\]
SORU 3) Uzunluğu 4 metre kütlesi 40 kg olan bir AB çubuğunun A ucu düşey doğrultuda B ucu yatay doğrultuda hareket edebilmektedir. Her iki doğrultuda da sürtünme katsayısı \(\mu_k = 0,2 \) dir. Çubuk \(\theta = 60^\circ \) de ilk hızz harekete bırakılıyor. Bu anda
a) Çubuğun açısal ivmesini b) A ve B mesnetlerindeki tepki kuvvetlerini hesaplayınız.

Çözüm:

\[\overline{AB} = L \]
\[\sum M_G = I_G \alpha \Rightarrow N_B \frac{L}{2} \cos \theta - f_B \frac{L}{2} \sin \theta - N_A \frac{L}{2} \sin \theta - f_A \frac{L}{2} \cos \theta = I_G \alpha \]
\[f_A = 0,2N_A \ , \ f_B = 0,2N_B \ , \ I_G = \frac{1}{12} mL^2 \]
\[N_B \frac{L}{4} - 0,2N_B \sqrt{3} \frac{L}{4} - N_A \sqrt{3} \frac{L}{4} - 0,2N_A \frac{L}{4} = \frac{1}{12} mL^2 \alpha \]
\[N_B (1 - 0,2 \sqrt{3}) - N_A (0,2 + \sqrt{3}) = \frac{1}{3} mL \alpha \]
\[\sum F_x = m a_{Gx} \Rightarrow N_A - f_B = m a_{Gx} \ , \ N_A - 0,2N_B = m a_{Gx} \]
\[\sum F_y = m a_{Gy} \Rightarrow N_B + f_A - mg = m a_{Gy} \ , \ N_B + 0,2N_A - mg = m a_{Gy} \]
\[\ddot{a}_G = \ddot{a}_B + \ddot{a}_{G/A} \ , \ \ddot{a}_B = \ddot{a}_A + \ddot{a}_{B/A} \ , \ \ddot{a}_A = \ddot{a}_B \hat{i} \ , \ \ddot{a}_A = \frac{I}{m} \hat{j} \]
\[\ddot{a}_{B/A} = \alpha \vec{k} \wedge \overline{AB} + \omega \vec{k} \wedge \vec{V}_{B/A} \ , \ \omega = 0 \ (\text{ilk hızz harekete bırakıldığından}) \]
\[\overline{AB} = \frac{L}{2} \hat{i} - \frac{\sqrt{3}}{2} L \hat{j} \ , \ \ddot{a}_{B/A} = \alpha \vec{k} \wedge \left(\frac{L}{2} \hat{i} - \frac{\sqrt{3}}{2} L \hat{j} \right) , \ \ddot{a}_{B/A} = \frac{\sqrt{3}}{2} L \alpha \hat{i} + \frac{L}{2} \alpha \hat{j} \]
\[\ddot{a}_b = a_b \ddot{i} = \dddot{a}_{b/A} = \frac{\sqrt{3}}{2} L \alpha \dddot{i} + \left(\frac{L}{2} \alpha + a_A \right) \dddot{j} \Rightarrow a_b = \frac{\sqrt{3}}{2} L \alpha \dot{i}, \quad \dddot{a}_b = \frac{\sqrt{3}}{2} L \alpha \dddot{i} \]

\[\ddot{a}_{G/B} = \alpha \dddot{k} \wedge \overrightarrow{BG} + \omega \dddot{k} \wedge \dot{\overrightarrow{V}}_{G/B}, \quad \overrightarrow{BG} = -\frac{1}{2} \overrightarrow{AB}, \quad \overrightarrow{BG} = -\frac{L}{4} \ddot{i} + \frac{\sqrt{3}}{4} L \ddot{j} \]

\[\ddot{a}_{G/B} = \alpha \dddot{k} \wedge \left(-\frac{L}{4} \ddot{i} + \frac{\sqrt{3}}{4} L \ddot{j} \right), \quad \ddot{a}_{G/B} = -\frac{\sqrt{3}}{4} L \alpha \ddot{i} - \frac{1}{4} L \alpha \ddot{j} \]

\[\ddot{a}_G = \frac{\sqrt{3}}{4} L \alpha \ddot{i} - \frac{1}{4} L \alpha \ddot{j}, \quad N_A - 0,2 N_B = m \frac{\sqrt{3}}{4} L \alpha, \quad N_B + 0,2 N_A - mg = -m \frac{1}{4} L \alpha \]

\[-(0,2 + \sqrt{3}) N_A + (1 - 0,2 \sqrt{3}) N_B - \frac{1}{3} m L \alpha = 0 \quad \begin{align*}
N_A - 0,2 & N_B - m \frac{\sqrt{3}}{4} L \alpha = 0 \quad \Rightarrow \quad N_A = 105,01 N \\
N_B + 0,2 & N_A + \frac{1}{4} m L \alpha = mg \quad N_B = 351,34 N
\end{align*} \]

\[f_A = 21 N, \quad f_B = 70,3 N, \quad R_A = \sqrt{105,01^2 + 21^2}, \quad R_A = 107 N \]

\[R_B = \sqrt{351,34^2 + 70,3^2}, \quad R_B = 358,3 N \]
SORU 1) \(t = 0 \) anında A(1;0;0) noktasından B(4;4;12) noktasına doğru \(V = 3 \text{ m/s} \) sabit hızı ile hareket eden bir maddesel noktasının 2 saniye sonraki yer vektörünü bulunuz.

\[\vec{r} = \overrightarrow{OA} + s \vec{U}_{AB} \]

hız sabit olduğundan \(s = s_0 + Vt \) dir. Burada \(s_0 = 0 \) olduğuna göre \(t = 2 \) için \(s = 3 \times 2 \), \(s = 6 \text{ m} \) bulunur.

\[\overrightarrow{OA} = \vec{i} \quad \vec{U}_{AB} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \quad \vec{U}_{AB} = \frac{3\vec{i} + 4\vec{j} + 12\vec{k}}{\sqrt{3^2 + 4^2 + 12^2}} \quad \overrightarrow{AB} = 3\vec{i} + 4\vec{j} + 12\vec{k} \]

\[\vec{r} = \left(1 + \frac{18}{13}\right)\vec{i} + \frac{24}{13}\vec{j} + \frac{72}{13}\vec{k} \quad \vec{r} = 2,38\vec{i} + 1,85\vec{j} + 5,54\vec{k} \]
SORU 2) Şekildeki sistemde A, B ve C bloklarının hızları ve ivmeleri arasındaki bağıntıları bulunuz.

Çözüm:

\[2s_A + 2s_D = \text{sabit} \]
\[(s_B - s_D) + s_B + s_C = \text{sabit} \]

Bu iki denklem arasında \(s_D \) yi yok etmek için 2 inci denklem 2 ile çarpıp taraf taraf toplanır.

\[2s_A + 2s_D = \text{sabit} \]
\[+ 2s_B - 2s_D + 2s_B + 2s_C = \text{sabit} \]
\[2s_A + 4s_B + 2s_C = \text{sabit} \]
\[\text{veya} \quad s_A + 2s_B + s_C = \text{sabit} \]

Bu elde edilen denklemin her iki tarafının zamana göre 1 inci ve 2 inci mertebeden türevleri alınrsa hızlar ve ivmeler arasındaki

\[V_A + 2V_B + V_C = 0 \quad \text{ve} \quad a_A + 2a_B + a_C = 0 \]

bağıntıları elde edilir.
SORU 3) Bir \(OAB \) dik üçgen levhası \(xy \) düzleminde bulunan ve \(x \) eksenile \(\theta = 60^\circ \) açı yapan \(\Delta \) ekseninin etrafında pozitif yönde dönüyor. Bir \(t \) anında üçgen levha \(xy \) düzleminde bulunan \(\Delta \) açısını \(\omega = 8 \text{ rad/s} \), \(\Delta \) açısının ivmesi \(\alpha = 4 \text{ rad/s}^2 \) olduğunu göre bu an için \(A \) noktasının hız ve ivme vektörlerini bulunuz.

![Diagram](image)

Çözüm:

\[
\begin{align*}
\vec{V}_A &= \vec{\omega} \wedge \vec{BA}, \quad \vec{\omega} = \omega \vec{U}_\Delta, \quad \vec{U}_\Delta = \cos 60^\circ \vec{i} + \sin 60^\circ \vec{j} \\
\vec{U}_\Delta &= \frac{1}{2} \vec{i} + \frac{\sqrt{3}}{2} \vec{j}, \quad \vec{\omega} = 4 \vec{i} + 4 \sqrt{3} \vec{j}, \quad \vec{BA} = 30(\vec{U}_\Delta \wedge \vec{k}) \quad \vec{BA} = 15 \sqrt{3} \vec{i} - 15 \vec{j} \\
\vec{V}_A &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 4 \sqrt{3} & 0 \\ 15 \sqrt{3} & -15 & 0 \end{vmatrix} = 4 \cdot (15) - 4 \cdot 15 \cdot 3 \vec{k}, \quad \vec{V}_A = -240 \vec{k} \\
\vec{a}_A &= \vec{\alpha} \wedge \vec{BA} + \vec{\omega} \wedge \vec{V}_A, \quad \vec{\alpha} = \alpha \vec{U}_\Delta, \quad \vec{\alpha} = 2 \vec{i} + 2 \sqrt{3} \vec{j} \\
\vec{a}_A &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 2 \sqrt{3} & 0 \\ 15 \sqrt{3} & -15 & 0 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 4 \sqrt{3} & 0 \\ 15 \sqrt{3} & -15 & 0 \end{vmatrix} = -4 \cdot 240 \sqrt{3} \vec{i} + 4 \cdot 240 \vec{j} + (-30 - 30 \cdot 3) \vec{k} \\
\vec{a}_A &= -960 \sqrt{3} \vec{i} + 960 \vec{j} - 120 \vec{k}, \quad \vec{a}_A = -1662.8 \vec{i} + 960 \vec{j} - 120 \vec{k}
\end{align*}
\]
Soru 1) Bir eğlence parkıında 9 metre yarıçapında bir silindir etrafında oluşturulmuş inşaatlı bir parkurda bir A vagonunun hareketi \(z = 7 + 3 \sin(\pi t /15) \) metre, \(\theta = \frac{\pi t}{60} \) radyan Denklemleri ile veriliyor. \(t = 21 \) de A vagonunun hızı ve ivmesinin bulunuz.

\[
\begin{align*}
\ddot{V} &= \dot{\rho} \hat{\rho} + \rho \dot{\theta} \hat{\theta} + \dot{z} \hat{k} \\
\ddot{a} &= (\ddot{\rho} - \rho \ddot{\theta}^2) \hat{\rho} + (\rho \ddot{\theta} + 2 \dot{\rho} \dot{\theta}) \hat{\theta} + \ddot{z} \hat{k}
\end{align*}
\]

Çözüm:

\[
\begin{align*}
\rho &= 0 \quad , \quad \dot{\rho} = 0 \quad , \quad \dot{\theta} = \frac{\pi}{60} \quad , \quad \ddot{\theta} = 0 \\
\ddot{z} &= \frac{\pi^2}{75} \cos(\pi t /15) \quad , \quad \ddot{z} = \frac{\pi^2}{75} \sin(\pi t /15)
\end{align*}
\]

\(t = 21 \) de \(\theta = \frac{21 \pi}{60}, \quad \theta = \frac{7 \pi}{20} \), \(z = 7 + 3 \sin(21 \pi /15) \), \(z = 4,147 \) m

\[
\begin{align*}
\ddot{z} &= \frac{\pi}{5} \cos(21 \pi /15) \quad , \quad \ddot{z} = -0,194 \text{ m/s} \quad , \quad \ddot{z} = 0,125 \text{ m/s}^2
\end{align*}
\]

\[
\begin{align*}
\ddot{V} &= 9 \frac{\pi}{60} \hat{\rho} - 0,194 \hat{k} \quad , \quad \ddot{V} = 0,471 \hat{\rho} - 0,194 \hat{k} \quad , \quad |\ddot{V}| = 0,509 \text{ m/s}
\end{align*}
\]

\[
\begin{align*}
\ddot{a} &= -9 \frac{\pi^2}{60^2} \hat{\rho} + 0,125 \hat{k} \quad , \quad \ddot{a} = -0,0247 \hat{\rho} + 0,125 \hat{k} \quad , \quad |\ddot{a}| = 0,127 \text{ m/s}^2
\end{align*}
\]
SORU 2) A pimi etrafında 60 devir/dakika sabit açısal hız ile dönen bir AB koluna mafsallı B diskı, hareketsiz olan A diskı etrafında kaymadan yuvarlanmaktadır. B diskinin A diskine temas noktası olan C noktasının hızını ve ivmesini bulunuz.

Çözüm :

\[\vec{V}_C = \vec{V}_B + \vec{V}_{C/B} \quad \vec{V}_B = \overrightarrow{AB} \omega_{AB} \hat{j} \quad \vec{V}_B = \overrightarrow{CB} \omega_B \quad \Rightarrow \quad \overrightarrow{CB} \omega_B = \overrightarrow{AB} \omega_{AB} \quad \Rightarrow \quad \omega_B = \frac{\overrightarrow{AB}}{\overrightarrow{CB}} \omega_{AB} \]

\[\omega_B = 2 \omega_{AB} \quad \vec{V}_{C/B} = -\overrightarrow{CB} \omega_B \hat{j} = -\overrightarrow{AB} \omega_{AB} \hat{j} \quad \Rightarrow \quad \vec{V}_C = 0 \]

\[\vec{a}_C = \vec{a}_B + \vec{a}_{C/B} \quad \vec{a}_B = -\overrightarrow{AB} \omega_{AB}^2 \hat{i} \quad \vec{a}_{C/B} = \overrightarrow{CB} \omega_B^2 \hat{i} \quad \vec{a}_{C/B} = \frac{\overrightarrow{AB}}{2} (2 \omega_{AB})^2 \hat{i} \]

\[\vec{a}_{C/B} = 2 \overrightarrow{AB} \omega_{AB}^2 \hat{i} \quad \vec{a}_C = \overrightarrow{AB} \omega_{AB}^2 \hat{i} \quad \omega_{AB} = \frac{60 \cdot 2 \pi}{60} \text{ rad/s} \quad \omega_{AB} = 2 \pi \text{ rad/s} \]

\[\vec{a}_C = 150 \cdot 4 \pi^2 \hat{i} \quad \vec{a}_C = 600 \pi^2 \text{ mm/s}^2 \quad \vec{a}_C = 0,6 \pi^2 \text{ m/s}^2 \quad \vec{a}_C = 5,92 \hat{i} \text{ m/s}^2 \]
SORU 3) Şekildeki sistem A etrafında dönen AB çubuğu ile C etrafında dönen CD çubuğundan oluşmuştur. AB çubuğuna sabit olan P pimi CD çubuğundaki kanalda hareket edebilmektedir. Sistem şekilde gösterilen konumdan geçeren AB çubuğunun açısal hızı $\omega_{AB} = 5 \text{ rad/s}$ ve açısal ivmesi $\alpha = 1 \text{ rad/s}^2$ olduğuna göre bu an için CD çubuğunun açısal hızını ve açısal ivmesini bulunuz.

Çözüm:

\[
\begin{align*}
\vec{v}_p &= \vec{v}_{bağ} + \vec{v}_{sür} , \quad \vec{v}_{bağ} = V_{bağ} \hat{U}_{CD} , \quad \vec{v}_{bağ} = \frac{\sqrt{2}}{2} V_{bağ} \hat{i} + \frac{\sqrt{2}}{2} V_{bağ} \hat{j} \\
\vec{v}_{sür} &= \omega_{CD} \vec{k} \wedge \overrightarrow{CP} , \quad \vec{v}_{sür} = \omega_{CD} \vec{k} \wedge (\sqrt{2} \hat{i} + \sqrt{2} \hat{j}) , \quad \vec{v}_{sür} = -\sqrt{2} \omega_{CD} \hat{i} + \sqrt{2} \omega_{CD} \hat{j} \\
\vec{v}_p &= \omega_{AB} \vec{k} \wedge \overrightarrow{AP} , \quad \vec{v}_p = -5 \vec{k} \wedge (\frac{3}{2} \hat{i} + \frac{3}{2} \sqrt{3} \hat{j}) , \quad \vec{v}_p = \frac{15}{2} \sqrt{3} \hat{i} - \frac{15}{2} \hat{j} \\
\vec{V}_p &= (\frac{\sqrt{2}}{2} V_{bağ} - \sqrt{2} \omega_{CD}) \hat{i} + (\frac{\sqrt{2}}{2} V_{bağ} + \sqrt{2} \omega_{CD}) \hat{j} = \frac{15}{2} \sqrt{3} \hat{i} - \frac{15}{2} \hat{j} \\
\frac{\sqrt{2}}{2} V_{bağ} - \sqrt{2} \omega_{CD} &= \frac{15}{2} \sqrt{3} \\
\Rightarrow \quad V_{bağ} &= \frac{15}{4} (\sqrt{6} - \sqrt{2}) = 3,88 \text{ cm/s} \\
\vec{a}_p &= \vec{a}_{bağ} + \vec{a}_{sür} + \vec{a}_{cor} , \quad \vec{a}_{bağ} = \frac{\sqrt{2}}{2} a_{bağ} \hat{i} + \frac{\sqrt{2}}{2} a_{bağ} \hat{j} , \quad \vec{a}_{sür} = \omega_{CD} \vec{k} \wedge \overrightarrow{CP} + \omega_{CD} \vec{k} \wedge \vec{v}_{sür} \\
\vec{a}_{cor} &= 2 \omega_{CD} \vec{k} \wedge \vec{v}_{bağ} , \quad \vec{a}_p = -\alpha_{AB} \vec{k} \wedge \overrightarrow{AP} - \omega_{AB} \vec{k} \wedge \vec{v}_p , \quad \vec{v}_{sür} = 10,244 \hat{i} - 10,244 \hat{j} \\
\vec{V}_{bağ} &= 2,745 \hat{i} + 2,745 \hat{j} , \quad \vec{a}_p = -\vec{k} \wedge \left(\frac{3}{2} \hat{i} + \frac{3}{2} \sqrt{3} \hat{j}\right) - 5 \vec{k} \wedge \left(\frac{15}{2} \sqrt{3} \hat{i} - \frac{15}{2} \hat{j}\right) \\
\vec{a}_p &= \frac{3}{2} \sqrt{3} \hat{i} - \frac{75}{2} \hat{j} + \left(-\frac{3}{2} \sqrt{3}\right) \hat{j} \\
\vec{a}_{sür} &= \alpha_{CD} \vec{k} \wedge (\sqrt{2} \hat{i} + \sqrt{2} \hat{j}) - 7,244 \vec{k} \wedge (10,244 \hat{i} - 10,244 \hat{j}) \\
\vec{a}_{cor} &= (-\sqrt{2} \alpha_{CD} - 74,21) \hat{i} + (\sqrt{2} \alpha_{CD} - 74,21) \hat{j} , \quad \vec{a}_{cor} = -2 \star 7,244 \vec{k} \wedge (2,745 \hat{i} + 2,745 \hat{j}) \\
\vec{a}_{cor} &= 39,77 \hat{i} - 39,77 \hat{j} ,
\end{align*}
\]
\[\ddot{a}_p = \left(\frac{3}{2} \sqrt{3} - \frac{75}{2} \right) \dot{i} + \left(-\frac{3}{2} - \frac{75}{2} \sqrt{3} \right) \dot{j} = \left(\frac{\sqrt{2}}{2} a_{bag.} \dot{i} + \frac{\sqrt{2}}{2} a_{bag.} \dot{j} \right) + \\
+ [(-\sqrt{2} \alpha_{CD} - 74,21) \dot{i} + (\sqrt{2} \alpha_{CD} - 74,21) \dot{j}] + (39,77 \dot{i} - 39,77 \dot{j}) \]

\[\frac{\sqrt{2}}{2} a_{bag.} - \sqrt{2} \alpha_{CD} - 74,21 + 39,77 = \frac{3}{2} \sqrt{3} - \frac{75}{2} \]

\[\frac{\sqrt{2}}{2} a_{bag.} + \sqrt{2} \alpha_{CD} - 74,21 - 39,77 = -\frac{3}{2} - \frac{75}{2} \sqrt{3} \]

\[\Rightarrow \]

\[\alpha_{CD} = 16,97 \text{ rad} / \text{s}^2 \]

\[a_{bag} = 33,281 \text{ cm} / \text{s}^2 \]
MAKİNE 2 G4 2003-2004 GÜZ YARIYILI DİNAMİK DERSİ 3. VİZE SORULARI VE CEVAPLARI

SORU 1) A pimi etrafında dönen AB çubuğu B ucundan , D pimi etrafında dönen CD çubuğu C ucundan BC Çubuğuna mafsallıdır. AB çubuğu saat ibreleri yönünde \(\omega_{AB} = 5 \text{ rad} / \text{s} \) sabit açısal hız ile dönyor . Sistem şekilde verilen konumdan geçerken a) BC çubuğunun açısal hızını b) BC çubuğunun açısal ivmesini c) G noktasının ivmesini bulunuz.

\[\begin{align*}
\text{Çözüm :} \\
\text{a)} & \quad V_B = \overrightarrow{AB} \times \omega_{AB}, \quad \overrightarrow{AB} = \sqrt{0.6^2 + 0.9^2}, \quad \overrightarrow{AB} = 1.17, \quad V_B = 5\sqrt{1.17}, \quad V_B = 5.41 \text{ m/s} \\
& \quad V_B = \overrightarrow{IB} \times \omega_{BC} \Rightarrow \omega_{BC} = \frac{V_B}{IB}, \quad \overrightarrow{IB} = \frac{\overrightarrow{AB}}{2}, \quad \omega_{BC} = 2\omega_{AB}, \quad \omega_{BC} = 10 \text{ rad} / \text{s} \\
\text{b)} & \quad \ddot{a}_c = \ddot{a}_b + \ddot{a}_{BC}, \quad \ddot{a}_c = \alpha_{CD} \ddot{k} = DC + \alpha_{CD} \ddot{k} = \ddot{V}_C, \quad \overrightarrow{DC} = -0.6 \ddot{i} + 0.9 \ddot{j}, \quad V_C = \overrightarrow{IC} \times \omega_{BC} \\
& \quad \overrightarrow{IC} = \overrightarrow{IB} \Rightarrow \quad V_C = V_B, \quad \omega_{CD} = \omega_{AB}, \quad \ddot{V}_C = 5\ddot{k} \wedge (-0.6 \ddot{i} + 0.9 \ddot{j}), \quad \dddot{V}_C = -4.5 \dddot{i} - 3 \dddot{j} \\
& \quad \dddot{a}_c = (15 - 0.9\alpha_{CD}) \dddot{i} + (-22.5 - 0.6\alpha_{CD}) \dddot{j}, \quad \dddot{a}_b = 5\ddot{k} \wedge (-4.5 \dddot{i} + 3 \dddot{j}), \quad \dddot{a}_b = -15 \dddot{i} - 22.5 \dddot{j} \\
& \quad \dddot{a}_{BC} = \alpha_{BC} \ddot{k} \wedge \overrightarrow{BC} + \omega_{BC} \dddot{k} \wedge \dddot{V}_{C/B}, \quad \dddot{V}_{C/B} = \dddot{V}_C - \dddot{V}_B, \quad \dddot{V}_{C/B} = -6 \dddot{i}, \quad \overrightarrow{BC} = 0.6 \ddot{i} \\
& \quad \dddot{a}_{BC} = \alpha_{BC} \ddot{k} \wedge 0.6 \dddot{i} - 10 \dddot{k} \wedge -6 \dddot{j}, \quad \dddot{a}_{BC} = -60 \dddot{i} + 0.6\alpha_{BC} \dddot{j} \\
& \quad \dddot{a}_c = (15 - 0.9\alpha_{CD}) \dddot{i} + (-22.5 - 0.6\alpha_{CD}) \dddot{j} = (-15 \dddot{i} - 22.5 \dddot{j}) + (-60 \dddot{i} + 0.6\alpha_{BC} \dddot{j}) \\
15 - 0.9\alpha_{CD} &= -75 \\
-22.5 - 0.6\alpha_{CD} &= -22.5 + 0.6\alpha_{BC} \\ \\
\alpha_{CD} &= 100 \text{ rad} / \text{s}^2, \quad \alpha_{BC} = -100 \text{ rad} / \text{s}^2 \\
\dddot{a}_G = \dddot{a}_b + \dddot{a}_{G/B} \\
\dddot{a}_{G/B} = \alpha_{AB} \ddot{k} \wedge BG + \omega_{AB} \ddot{k} \wedge \dddot{V}_{G/B}, \quad \dddot{a}_{G/B} = -30 \dddot{i} - 30 \dddot{j}, \quad \dddot{a}_G = -45 \dddot{i} - 52.5 \dddot{j} \\
\end{align*} \]
SORU 2) BD ve EH gibi iki çubuk altıgen bir bloğun içine açılan iki delikten geçmektedir. (Delikler farklı düzlemde olduklarından çubuklar birbirlerine dokunmuyor.) BD Çubuğun saat yönünde ω hızı ile döndüğüne göre $\theta = 60^\circ$ için a) EH çubuğunun açısal hızını b) Bloğun BD çubuğuna göre bağılı hızını c) Bloğun EH çubuğuna göre bağılı hızını bulunuz. (Çubuklar arasındaki açısını sabit olduğuna dikkat ediniz.)

\[
\begin{align*}
\vec{V}_p &= \vec{V}_\text{bağ} + \vec{V}_\text{sür} \\
\vec{V}_\text{bağ} &= V_\text{bağ} \sin 60^\circ \hat{i} + V_\text{bağ} \cos 60^\circ \hat{j} \\
\vec{V}_\text{sür} &= -\omega \hat{k} \times \overrightarrow{BP} \\
V_\text{bağ} &= \frac{\sqrt{3}}{2} L \omega \hat{i} + \frac{1}{2} V_\text{bağ} \hat{j} \\
V_\text{bağ} &= \frac{\sqrt{3}}{2} L \omega \hat{i} - \frac{1}{2} V_\text{bağ} \hat{j} \\
\overrightarrow{BP} &= \sqrt{3} \hat{i} + \frac{1}{2} V_\text{bağ} \hat{j} \\
\vec{V}_\text{sür} &= -\omega \hat{k} \times \overrightarrow{EP} \\
\overrightarrow{EP} &= L \sin 60^\circ \hat{i} + L \cos 60^\circ \hat{j} \\
\vec{V}_\text{sür} &= \frac{1}{2} L \omega \hat{i} - \frac{\sqrt{3}}{2} L \omega \hat{j}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
V_{\text{bağ} I} &= L \omega \\
V_{\text{bağ} II} &= L \omega
\end{cases}
\end{align*}
\]
SORU 3) Kütlesi 3 kg olan 75 cm uzunluğundaki bir AB çubuğu, O etrafında saat ibreleri yönünde \(\omega_o = 10 \text{ rad/s} \) sabit açısal hız ile dönen bir diske bağlanmıştır. Sistem şekilde verilen konumdan geçerken A ve B mafsallarından çubuğa uygulanan kuvvetleri hesaplayınız.

\[
m = 3 \text{ kg}, \quad \overline{OA} = 30 \text{ cm}, \quad \overline{AB} = 75 \text{ cm}
\]

Çözüm :

\[
\sum \mathbf{M}_G = I_G \alpha_{AB} \Rightarrow R_{Ax} \overline{OB} \hat{x} + R_{Ay} \overline{OA} \hat{y} = \frac{1}{12} m L^2 \alpha_{AB}, \quad \overline{OB} = \sqrt{0,75^2 - 0,3^2}, \overline{OB} = \sqrt{0,4725} \text{ m}
\]

\[
0,4725 \ R_{Ax} + 0,3 \ R_{Ay} = 0,28125 \alpha_{AB}
\]

\[
\sum F_x = m a_{Gx} \Rightarrow R_{Ax} + R_B = m a_{Gx}
\]

\[
\sum F_y = m a_{Gy} \Rightarrow R_{Ay} - mg = m a_{Gy}
\]

\[
\vec{a}_G = \vec{a}_A + \vec{a}_{G/A}, \quad \vec{a}_A = -\overline{OA} \omega_o^2 \hat{i}, \quad \vec{a}_A = -0,3 \times 10^2 \hat{i}, \quad \vec{a}_A = -30 \hat{i}
\]

\[
\vec{a}_{G/A} = \alpha_{AB} \vec{k} \land \overline{AG} + \omega_{AB} \vec{k} \land \vec{V}_{G/A}, \quad \overline{AG} = -0,15 \hat{i} + \frac{\sqrt{0,4725}}{2} \hat{j}
\]

\[
\vec{a}_{B/A} = \alpha_{AB} \vec{k} \land \overline{AB} + \omega_{AB} \vec{k} \land \vec{V}_{B/A}, \quad \vec{a}_{B/A} = \vec{a}_B - \vec{a}_A, \quad \vec{a}_B = a_B \hat{j}, \quad \vec{a}_{B/A} = 30 \hat{i} + a_B \hat{j}
\]

\[
\vec{V}_{B/A} = \vec{V}_B - \vec{V}_A, \quad \vec{V}_A = -\overline{OA} \times \omega_o \hat{j}, \quad \vec{V}_A = -3 \hat{j}, \quad \overline{AB} = -0,3 \hat{i} + \sqrt{0,4725} \hat{j}
\]

Ani dönme merkezi sonsuzda olduğundan \(\omega_{AB} = 0 \), \(V_B = V_A \), \(\vec{V}_{B/A} = \vec{0} \) ve \(\vec{V}_{G/A} = \vec{0} \) dir.
\[\vec{V}_B = -3 \hat{j}, \quad \vec{a}_{B/\alpha} = \alpha_{AB} \hat{k} \wedge (-0.3 \hat{i} + \sqrt{0.4725} \hat{j}), \quad \vec{a}_{B/\alpha} = -\sqrt{0.4725} \alpha_{AB} \hat{i} - 0.3 \alpha_{AB} \hat{j} \]

\[\vec{a}_{B/\alpha} = 30 \hat{i} + a_{\beta} \hat{j} = -\sqrt{0.4725} \alpha_{AB} \hat{i} - 0.3 \alpha_{AB} \hat{j} \Rightarrow \]

\[\alpha_{AB} = -\frac{30}{\sqrt{0.4725}} \text{ rad/s}^2, \quad a_{\beta} = \frac{9}{\sqrt{0.4725}} \text{ m/s}^2 \]

\[\vec{a}_{G/\alpha} = -\frac{30}{\sqrt{0.4725}} \hat{k} \wedge (-0.15 \hat{i} + \sqrt{0.4725} \hat{j}), \quad \vec{a}_{G/\alpha} = 15 \hat{i} + \frac{4.5}{\sqrt{0.4725}} \hat{j} \]

\[\vec{a}_G = -15 \hat{i} + \frac{4.5}{\sqrt{0.4725}} \hat{j} \]

\[R_{Ax} + R_y = -45 \]

\[R_{Ay} - mg = \frac{13.5}{\sqrt{0.4725}} \]

\[\sqrt{0.4725} R_{Ax} + 0.3 R_{Ay} = -\frac{8.4375}{\sqrt{0.4725}} \]

\[\begin{align*}
R_{Ax} &= -42.14 \text{ N,} & R_{Ay} &= 49.07 \text{ N,} & R_d &= 64.7 \text{ N,} \\
R_y &= -2.87 \text{ N}
\end{align*} \]
Soru 1) Şekildeki gibi C pimi etrafında dönen CP koluna P de mafsallı P bileziği, O etrafında dönen OB kolu üzerinde hareket edebilmiştir. Sistem şekilde verilen konumdan geçerken OB kolunun açısal hızı \(\omega_{OB} = 2 \text{ rad} / \text{s} \) ve açısal ivmesi \(\alpha_{OB} = 8 \text{ rad} / \text{s}^2 \) olduğu göre bu an için CP kolunun a) açısal hızını b) açısal ivmesini bulunuz. c) P bileziğinin OB çubukuna göre bağlı ivmesini hesaplayınız.

Çözüm:

a) \(\ddot{V}_P = \dot{V}_{bag.} + \dot{V}_{sur.} \)
\(\dot{V}_{bag.} = V_{bag.} \hat{j}, \quad \dot{V}_{sur.} = -\omega_{OB} \overline{OP} \hat{i}, \quad \ddot{V}_{sur.} = -20 \hat{i}, \quad \ddot{V}_P = -20 \hat{i} + V_{bag.} \hat{j} \)
\(\ddot{V}_P = -6 \omega_{CP} \hat{i} + 8 \omega_{CP} \hat{j} = -20 \hat{i} + V_{bag.} \hat{j} \quad \Rightarrow \quad \omega_{cp} = \frac{10}{3} \text{ rad} / \text{s}, \quad V_{bag.} = \frac{80}{3} \text{ cm} / \text{s} \)

b), c) \(\ddot{a}_P = \ddot{a}_{bag.} + \ddot{a}_{sur.} + \ddot{a}_{cor.} \)
\(\ddot{a}_{bag.} = a_{bag.} \hat{j}, \quad \ddot{a}_{sur.} = -\alpha_{OB} \overline{OP} \hat{i} - \omega_{OB} \overline{OP} \hat{j}, \quad \ddot{a}_{sur.} = -80 \hat{i} - 40 \hat{j} \)
\(\ddot{a}_{cor.} = 2 \omega_{OB} \hat{k} \wedge \hat{V}_{bag.}, \quad \ddot{a}_{cor.} = 4 \hat{k} \wedge \frac{80}{3} \hat{j}, \quad \ddot{a}_{cor.} = \frac{320}{3} \hat{i}, \quad \ddot{a}_P = \frac{560}{3} \hat{i} + (a_{bag.} - 40) \hat{j} \)
\[\ddot{a}_p = \alpha_{cP} \vec{k} \wedge \vec{CP} + \omega_{cP} \vec{k} \wedge \vec{V}_p, \quad \vec{V}_p = -20 \vec{i} + \frac{80}{3} \vec{j} \]

\[\ddot{a}_p = \alpha_{cP} \vec{k} \wedge (8 \vec{i} + 6 \vec{j}) + \frac{10}{3} \vec{k} \wedge (-20 \vec{i} + \frac{80}{3} \vec{j}), \quad \ddot{a}_p = (-6 \alpha_{cP} - \frac{800}{9}) \vec{i} + (8 \alpha_{cP} - \frac{200}{3}) \vec{j} \]

\[\ddot{a}_p = (-6 \alpha_{cP} - \frac{800}{9}) \vec{i} + (8 \alpha_{cP} - \frac{200}{3}) \vec{j} = -\frac{560}{3} \vec{i} + (a_{bag} - 40) \vec{j} \]

\[-6 \alpha_{cP} - \frac{800}{9} = -\frac{560}{3} \]
\[8 \alpha_{cP} - \frac{200}{3} = a_{bag} - 40 \]

\[\begin{aligned} &\Rightarrow \quad \begin{cases} \alpha_{cP} = \frac{440}{27}, &\alpha_{cP} = 16.3 \text{ rad/s} \\ a_{bag} = \frac{280}{27}, &a_{bag} = 103.7 \text{ cm/s}^2 \end{cases} \end{aligned} \]
Soru 2) Yatay eksen etrafında ω_A açısal hızı ile dönen Bir A diski, düşey eksen etrafında bir B diskini kaymadan yuvarlama şartı ile ω_B açısal hızı ile döndürmektedir. A diski 600 devir/dakika dönüş hızı ile dönerken, B diskinin merkezine doğru $s = 10 - 0,5t$ bağıntısı ile (burada s: cm, t: saniye cinsindendir.) yaklaşır $s = r$ iken B diskinin
a) açısal ivmesini,

b) B çevre noktası ivmesinin şiddetini bulunuz.

\[r = 5 \text{ cm}, \quad R = 15 \text{ cm} \]

Çözüm:

Diskin temas noktalarında ve z eksenii doğrultusunda kayma olmadıgından temas noktasındaki hızların z bileşenleri eşittir.

\[r \omega_A = s \omega_B \quad \Rightarrow \quad \omega_B = \frac{r}{s} \omega_A, \quad \omega_A = \frac{10 - 0,5t}{60} \pi \text{ rad/s} \]

\[\omega_B = \frac{100 \pi}{10 - 0,5t}, \quad \alpha_B = \frac{d \omega_B}{dt}, \quad \alpha_A = \frac{50 \pi}{(10 - 0,5t)^2} \]

\[s = r \text{ de } \omega_B = \frac{100 \pi}{r}, \quad \omega_A = 20 \pi \text{ rad/s} \]

\[\ddot{a}_B = R \alpha_B \ddot{T} + R \omega_B^2 \dddot{N} \]

\[\ddot{a}_B = 30 \pi \ddot{T} + 6000 \pi^2 \dddot{N}, \quad a_B = 30 \pi \sqrt{1 + 40000 \pi^2} \text{ cm/s}^2 \]

\[a_B = 592,2 \text{ m/s}^2 \]
Soru 3) Bir A volanı, bir ray üzerinde kaymadan yuvarlanan \(r = 40 \text{ mm} \) yarıçapındaki bir şafat rijit olarak bağlıdır. Sistem ilk hızı harekete bırakılırsa ray üzerinde 1,5 m yol aldıktan sonra merkezin hızı \(V_g = 160 \text{ mm/s} \) oldına göre sistemin atalet yarıçapını hesaplayınız.

![Şekil](image.png)

Çözüm :

\[\tau_{1\rightarrow 2} + T_1 = T_2, \quad \tau_{1\rightarrow 2} = mgh, \quad h = 1,5 \sin 15^0, \quad \tau_{1\rightarrow 2} = 1,5 mg \sin 15^0 \]

\[T_1 = 0, \quad T_2 = \frac{1}{2} m V_g^2 + \frac{1}{2} I_G \omega^2, \quad V_g = r \omega \Rightarrow \omega = \frac{V_g}{r}, \quad I_G = mk^2 \]

\[T_2 = \frac{1}{2} m V_g^2 + \frac{1}{2} m k^2 \frac{V_g^2}{r^2}, \quad T_2 = \frac{1}{2} m 0,16 + \frac{1}{2} m k^2 \left(\frac{0,16}{0,04} \right)^2 \]

\[T_2 = m(0,0128 + k^2) = 1,5 mg \sin 15^0 \Rightarrow k = \sqrt{\frac{1,5 g \sin 15^0 - 0,0128}{8}} \]

\[k = 0,689 \text{ metre}, \quad k = 689 \text{ mm} \]
Soru 1) Şekildeki sistemde dik açılı gönye şeklindeki OCD cismi O köşesi etrafında dönebilmektedir. Yatay doğrultuda hareket eden A pimi OC kanalında, düşey doğrultuda hareket eden B pimi OD kanalında da hareket edebilmektedir. A piminin hızının şiddeti B piminin hızının şiddetine bağlı olarak bulunuz.

\[
\vec{V}_A = V_A \hat{i} , \quad \vec{V}_B = V_B \hat{j} , \quad \vec{V}_A = \vec{V}_{bağ_A} + \vec{V}_{sür_A} , \quad \vec{V}_B = \vec{V}_{bağ_B} + \vec{V}_{sür_B}
\]

\[
\vec{V}_{bağ_A} = V_{bağ_A} \cos \theta \hat{i} - V_{bağ_A} \sin \theta \hat{j} , \quad \vec{V}_{bağ_B} = V_{bağ_B} \sin \theta \hat{i} + V_{bağ_B} \cos \theta \hat{j}
\]

\[
\vec{V}_{sür_A} = \hat{\theta} \hat{k} \times \overrightarrow{OA} , \quad \vec{V}_{sür_B} = \hat{\theta} \hat{k} \times \overrightarrow{OB} , \quad \overrightarrow{OA} = x \hat{i} - a \hat{j} , \quad \overrightarrow{OB} = b \hat{i} + y \hat{j}
\]

\[
\vec{V}_A = \vec{V}_{A\hat{i}} = (\vec{\theta} a + V_{bağ_A} \cos \theta) \hat{i} + (\vec{\theta} x - V_{bağ_A} \sin \theta) \hat{j} \quad \Rightarrow \quad \vec{\theta} a + V_{bağ_A} \cos \theta = V_A
\]

\[
\vec{V}_B = V_{bağ_B} \sin \theta \hat{i} + (\vec{\theta} b + V_{bağ_B} \cos \theta) \hat{j} \quad \Rightarrow \quad -\vec{\theta} y + V_{bağ_B} \sin \theta = V_B
\]

\[
\vec{\theta} x = V_{bağ_A} \sin \theta \quad \Rightarrow \quad V_{bağ_A} = \frac{x}{\sin \theta} , \quad \tan \theta = \frac{a}{x} = \frac{b}{y} \quad \Rightarrow \quad \vec{\theta} y = V_{bağ_B} \sin \theta
\]

\[
\vec{\theta} a + V_{bağ_A} \cos \theta = V_A \quad \Rightarrow \quad V_{bağ_A} \frac{a}{x} \sin \theta + V_{bağ_A} \cos \theta = V_A
\]

\[
\vec{\theta} b + V_{bağ_B} \cos \theta = V_B \quad \Rightarrow \quad V_{bağ_B} \frac{b}{y} \sin \theta + V_{bağ_B} \cos \theta = V_B
\]
Soru 2) Şekildeki planet dişli sisteminde A merkez dişlinin yarıçapı \(R_A \), planet dişlilerinin yarıçapı \(R_B \), dıştaki E dişlinin yarıçapı ise \(R_A + 2R_B \) dir. Özel olarak \(R_A = R_B = 6 \text{ cm} \) olan dişli sisteminde A dişlinin açısal hızı \(\omega_A \) olsun. Diş dişinin hareketsiz olduğu bilindiğine göre a) Planet dişlilerin açısal hızını b) Planet dişlileri birleştiren kolların açısal hızını bulunuz.

Çözüm :

a) T temas noktasında kayma olmadığından A ve B dişlinin bu noktaların hızları birbirine eşittir. Ayrıca E dişli hareketsiz olduğundan B dişlinin I noktasının hızı sıfırdır.

\[
V_t = \omega_A R_A = \omega_B \overrightarrow{TT} \Rightarrow \omega_B = \frac{R_A}{2R_B} , \quad \omega_B = \frac{\omega_A}{2}
\]

b) \(V_B = \omega_{BCD} \overrightarrow{AB} \Rightarrow \omega_{BCD} = \frac{V_B}{(R_A + R_B)} , \quad V_B = \omega_B R_B \), \(V_B = \frac{\omega_A}{2} R_B \)

\[
\omega_{BCD} = \frac{\omega_A R_B}{2(R_A + R_B)} , \quad \omega_{BCD} = \frac{\omega_A R_B}{4R_B} , \quad \omega_{BCD} = \frac{\omega_A}{4}
\]
Soru 3) Bir kaldırmma makinesinin volanının kütesi 400 kg ve atalet yarçapı 60 cm dir. 100 kg Kütleli bir yük 2 m/s hızı ile yukarı doğru kaldırılırken makinenin gücü birden kesiliyor. Makine durana kadar yük 4,5 m daha yükseldiği göre, O miline etkiyen sürünme momentinin şiddetini hesaplayınız.

(r = 25 cm)

Çözüm :
\[\tau_{1\rightarrow 2} + T_1 = T_2 \]
\[\tau_{1\rightarrow 2} = -100 \times g \times 4,5 - M \times \Delta \theta \]

Burada \[\Delta \theta = \frac{4,5}{r} \text{ rad} \], \[\Delta \theta = 18 \text{ rad} \] Volanın durana kadar dönüş açısı

\[T_1 = \frac{1}{2} 100 V^2 + \frac{1}{2} I_o \omega^2 \]
\[T_2 = 0 \]
\[I_o = m k^2 \]
\[T_1 = \frac{1}{2} 100 V^2 + \frac{1}{2} m k^2 \omega^2 \]

\[V = r \omega \Rightarrow \omega = \frac{V}{r} \]

\[T_1 = \frac{1}{2} 100 \times 4 + \frac{1}{2} 400 \times 0,6^2 \left(\frac{2}{0,25} \right)^2 \]
\[T_1 = 4808 \text{ Nm} \]

\[100 \times g \times 4,5 + M \times \Delta \theta = 4808 \Rightarrow M = \frac{4808 - 450g}{\Delta \theta} \]

\[M = \frac{4808 - 450g}{18} \]
\[M = 21,86 \text{ Nm} \]
Soru 1) Şekildeki krank biyel mekanizmasında OA krank kolu saat ibreleri tersi yönde \(\omega_{OA} = 20 \text{ rad/s} \) (sabit) acısal hız ile O etrafında dönüyor. Sistem şekilde verilen konumdan geçeren D pistonunun hızı ve CD kolumun acısal hızını bulunuz.

\[
\overline{OA} = 40 \text{ cm}, \quad AC = CB = CD = 20\sqrt{37} \text{ cm}
\]

Çözüm:

\[
\vec{v}_D = \vec{v}_C + \vec{v}_{D/C}, \quad \vec{v}_D = V_D \hat{j}
\]

AB çubuğunun ani dönüşme merkezi sonsuzda olduğundan

\[
V_C = V_B = V_A, \quad V_A = \omega_{OA} \overline{OA}, \quad V_A = 800 \text{ cm/s}, \quad V_A = 800 \hat{i}, \quad V_C = 800 \hat{i}
\]

\[
\dot{v}_{D/C} = \omega_{CD} \vec{k} \wedge \overrightarrow{CD}, \quad \overrightarrow{CD} = (D_x - C_x) \hat{i} + (D_y - C_y) \hat{j}, \quad D_x = 120 \text{ cm}
\]

\[
C_x = \frac{\overline{OB}}{2}, \quad \overline{OB} = \sqrt{40^2 \cdot 37 - 40^2}, \quad \overline{OB} = 240 \text{ cm}, \quad C_x = 120 \text{ cm}
\]

\[
D_x - C_x = 0 \quad \text{olduğundan} \quad (D_y - C_y) = -\overrightarrow{CD}, \quad (D_y - C_y) = -20\sqrt{37}
\]

\[
\dot{v}_{D/C} = \omega_{CD} \vec{k} \wedge -20\sqrt{37} \hat{j}, \quad \dot{v}_{D/C} = 20\sqrt{37} \omega_{CD} \hat{i}
\]

\[
\vec{v}_D = V_D \hat{j} = (800 + 20\sqrt{37} \omega_{CD}) \hat{i} \quad \Rightarrow \quad \vec{v}_D = 0, \quad 800 + 20\sqrt{37} \omega_{CD} = 0
\]

\[
\omega_{CD} = -\frac{40}{\sqrt{37}} \quad , \quad \omega_{CD} = -6,58 \text{ rad/s}
\]
Soru 2) O_1 etrafında $n_{O_1O_2} = 180$ devir / dakika dönüş hızı ile saat ibreleri yönünde dönen bir O_1O_2 koluna O_2 den mafsallı $r_2 = 9 \text{ cm}$ yarıçaplı disk, $r_1 = 18 \text{ cm}$ yarıçaplı sabit bir çemberin içinde kaymadan yuvarlanmaktadır. Aynı anda doğrusal hareket yapabilen bir AP çubuğu dönen diske sürekli temas halindedir. $\varphi = 45^\circ$ için AP çubuğunun hızını bulunuz.

Çözüm:

\[\vec{V}_p = \vec{V}_{bag} + \vec{V}_{sir} . \]
\[\vec{V}_p = V_p \vec{i} , \quad \vec{V}_{bag} = \omega_{bag} \vec{k} \wedge \overrightarrow{O_2 P} , \quad \vec{V}_{sir} = \vec{V}_{O_2} + \omega_{O_2} \vec{k} \wedge \overrightarrow{O_2 O} , \quad \vec{V}_{O_2} = -\omega_{O_2} \vec{k} \wedge \overrightarrow{O_2 P} \]
\[\overrightarrow{O_2 P} = -r_2 \cos \varphi \vec{i} - r_2 \sin \varphi \vec{j} , \quad \overrightarrow{O_2 O} = -r_2 \cos \varphi \vec{i} + r_2 \sin \varphi \vec{j} \]
\[\overrightarrow{O_2 P} = -9 \cos \varphi \vec{i} - 9 \sin \varphi \vec{j} , \quad \overrightarrow{O_2 O} = -9 \cos \varphi \vec{i} + 9 \sin \varphi \vec{j} \]
\[\omega_{O2} = \frac{2\pi}{60} n_{O_1O_2} , \quad \omega_{O2} = \frac{2\pi}{60} 180 , \quad \omega_{O2} = 6\pi \text{ rad} / s \]
\[V_{O_2} = r_2 \omega_{O2} , \quad V_{O_2} = 54\pi \text{ cm} / s , \quad V_i = 0 \Rightarrow V_{O_2} = r_2 \omega_{O2} \Rightarrow \omega_{O2} = 6\pi \text{ rad} / s \]
\[\vec{V}_{O_2} = -6\pi \vec{k} \wedge (-9 \cos \varphi \vec{i} + 9 \sin \varphi \vec{j}) , \quad \vec{V}_{O_2} = 54\pi \sin \varphi \vec{i} + 54\pi \cos \varphi \vec{j} \]
\[\vec{V}_{bag} = \omega_{bag} \vec{k} \wedge (-9 \cos \varphi \vec{i} - 9 \sin \varphi \vec{j}) , \quad \vec{V}_{bag} = 9 \omega_{bag} \sin \varphi \vec{i} - 9 \omega_{bag} \cos \varphi \vec{j} \]
\[\omega_{O2} \vec{k} \wedge \overrightarrow{O_2 P} = 54\pi \sin \varphi \vec{i} - 54\pi \cos \varphi \vec{j} \]
\[\vec{V}_{sir} = 108\pi \sin \varphi \vec{i} \]
\[\vec{V}_p = V_p \vec{i} = (9 \omega_{bag} \sin \varphi + 108\pi \sin \varphi) \vec{i} - 9 \omega_{bag} \cos \varphi \vec{j} \Rightarrow \omega_{bag} = 0 \]
\[9 \omega_{bag} \sin \varphi + 108\pi \sin \varphi = V_p \]
\[V_p = 108\pi \sin \varphi , \quad V_p = 239,9 \text{ cm} / s \]
Soru 3) Aynı malzemenin üretilmiş iki disk bir şafak şekilde gösterildiği gibi yerleştirilmiştir. Sistem hareksiz iken şafak ekseninde bir sabit M_A momenti uygulanıp 2 tam devir sonra moment kaldırılmıştır. B diskinin dış çevresi noktasının hızının şiddetinin maksimum olması için n çarpm katsayısı ne olmalıdır.

Çözüm:

$\tau_{1\rightarrow 2} + T_1 = T_2$
$\tau_{1\rightarrow 2} = M \cdot 2 \cdot 2\pi$, $\tau_{1\rightarrow 2} = 4\pi M$

$T_1 = 0$, $T_2 = \frac{1}{2}I_x \omega^2$, $I_x = \frac{1}{2}m_A r^2 + \frac{1}{2}m_B (nr)^2$

$m_A = \rho \pi r^2 b$, $m_B = \rho \pi (nr)^2 3b$, $I_x = \frac{1}{2} \rho \pi br^4 + \frac{3}{2} \rho \pi b n^4 r^4$

$T_2 = \frac{1}{4} \rho \pi b (r^4 + 3n^4 r^4) \omega^2 = 4\pi M \Rightarrow \omega = \sqrt{\frac{16\pi M}{\rho \pi b (r^4 + 3n^4 r^4)}}$

$V_B = nr \omega$, $V_B = \sqrt{\frac{16\pi M n^2 r^2}{\rho \pi b (r^4 + 3n^4 r^4)}}$, $V_B = \frac{16\pi M}{\rho \pi b r^2} \sqrt{\frac{n^2}{1 + 3n^4}}$

V_B nin maksimum olması için $f(n) = \frac{n^2}{1 + 3n^4}$ fonksiyonunun maksimum olması gereklidir. Bunun için fonksiyonun n ye göre türevi alınıp sıfıra eşitlenir.

$$\frac{df(n)}{dn} = \frac{2n}{1 + 3n^4} - \frac{12n^5}{(1 + 3n^4)^2} = 0$$

paydalar eşitlenirse $2n + 6n^5 - 12n^5 = 0$

$2 - 6n^4 = 0$ denklemi elde edilir. Buradan $n^4 = \frac{1}{3}$, $n = \left(\frac{1}{3}\right)^{1/4}$, $n = 0,76$

bulunur.