Chapter 2: Association Rules & Sequential Patterns

Instructor: Dr. Mehmet S. Aktaş

Acknowledgement: Thanks to Dr. Bing Liu for teaching materials.
Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary
Association rule mining

- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- No good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

\[\text{Bread} \rightarrow \text{Milk} \quad [\text{sup} = 5\%, \text{conf} = 100\%] \]
The model: data

- \(I = \{i_1, i_2, \ldots, i_m\} \): a set of items.
- Transaction \(t \):
 - \(t \) a set of items, and \(t \subseteq I \).
- Transaction Database \(T \): a set of transactions \(T = \{t_1, t_2, \ldots, t_n\} \).
Transaction data: supermarket data

- Market basket transactions:
 - t1: \{bread, cheese, milk\}
 - t2: \{apple, eggs, salt, yogurt\}
 ...
 ...
 - tn: \{biscuit, eggs, milk\}

- Concepts:
 - An *item*: an item/article in a basket
 - \(I \): the set of all items sold in the store
 - A *transaction*: items purchased in a basket; it may have TID (transaction ID)
 - A *transactional dataset*: A set of transactions
Transaction data: a set of documents

- A text document data set. Each document is treated as a “bag” of keywords

 doc1: Student, Teach, School
 doc2: Student, School
 doc3: Teach, School, City, Game
 doc4: Baseball, Basketball
 doc5: Basketball, Player, Spectator
 doc6: Baseball, Coach, Game, Team
 doc7: Basketball, Team, City, Game
The model: rules

- A transaction t contains X, a set of items (itemset) in I, if $X \subseteq t$.
- An association rule is an implication of the form:
 $$X \rightarrow Y,$$
 where $X, Y \subseteq I$, and $X \cap Y = \emptyset$

- An itemset is a set of items.
 - E.g., $X = \{\text{milk, bread, cereal}\}$ is an itemset.
- A k-itemset is an itemset with k items.
 - E.g., $\{\text{milk, bread, cereal}\}$ is a 3-itemset
Rule strength measures

- **Support**: The rule holds with support sup in T (the transaction data set) if $sup\%$ of transactions contain $X \cup Y$.
 - $sup = \Pr(X \cup Y)$.
- **Confidence**: The rule holds in T with confidence $conf$ if $conf\%$ of transactions that contain X also contain Y.
 - $conf = \Pr(Y \mid X)$
- An association rule is a pattern that states when X occurs, Y occurs with certain probability.
Support and Confidence

- **Support count**: The support count of an itemset \(X \), denoted by \(X.count \), in a data set \(T \) is the number of transactions in \(T \) that contain \(X \). Assume \(T \) has \(n \) transactions.

- Then,

\[
support = \frac{(X \cup Y).count}{n}
\]

\[
confidence = \frac{(X \cup Y).count}{X.count}
\]
Goal and key features

- **Goal**: Find all rules that satisfy the user-specified *minimum support* (minsup) and *minimum confidence* (minconf).

- **Key Features**
 - Completeness: find all rules.
 - No target item(s) on the right-hand-side
An Example:

- Itemset $X = \{x_1, \ldots, x_k\}$
- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - **support**, s, probability that a transaction contains $X \cup Y$
 - **confidence**, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$

Freq. Pat.: $\{A:3, B:3, D:4, E:3, AD:3\}$

Association rules:
- $A \rightarrow D$ (60\%, 100\%)
- $D \rightarrow A$ (60\%, 75\%)

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, D</td>
</tr>
<tr>
<td>20</td>
<td>A, C, D</td>
</tr>
<tr>
<td>30</td>
<td>A, D, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
<tr>
<td>50</td>
<td>B, C, D, E, F</td>
</tr>
</tbody>
</table>
Another example

- **Transaction data**
- **Assume:**
 - minsup = 30%
 - minconf = 80%
- **An example frequent itemset:**
 \{Chicken, Clothes, Milk\} \[sup = 3/7\]
- **Association rules from the itemset:**
 - Clothes → Milk, Chicken \[sup = 3/7, conf = 3/3\]
 -
 - Clothes, Chicken → Milk, Clothes \[sup = 3/7, conf = 3/3\]
Transaction data representation

- A simplistic view of shopping baskets,
- Some important information not considered. E.g,
 - the quantity of each item purchased and
 - the price paid.
Many mining algorithms

- There are a large number of them!!
- They use different strategies and data structures.
- Their resulting sets of rules are all the same.
 - Given a transaction data set T, and a minimum support and a minimum confident, the set of association rules existing in T is uniquely determined.
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different.
- We study only one: the Apriori Algorithm
Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary
The Apriori algorithm

- The best known algorithm

- Two steps:
 - Find all itemsets that have minimum support (frequent itemsets, also called large itemsets).
 - Use frequent itemsets to generate rules.

- E.g., a frequent itemset:
 - \{Chicken, Clothes, Milk\} \ [sup = 3/7]
 - and one rule from the frequent itemset:
 - Clothes → Milk, Chicken \ [sup = 3/7, conf = 3/3]
Step 1: Mining all frequent itemsets

- A frequent itemset is an itemset whose support is $\geq \text{minsup}$.
- Key idea: The apriori property (downward closure property): any subsets of a frequent itemset are also frequent itemsets.
The Algorithm

- **Iterative algo.** (also called *level-wise search*): Find all 1-item frequent itemsets; then all 2-item frequent itemsets, and so on.
 - In each iteration k, only consider itemsets that contain some $k-1$ frequent itemset.

- Find frequent itemsets of size 1: F_1

- From $k = 2$
 - C_k = candidates of size k: those itemsets of size k that could be frequent, given F_{k-1}
 - F_k = those itemsets that are actually frequent, $F_k \subseteq C_k$ (need to scan the database once).
Finding frequent itemsets

1. scan T \Rightarrow C_1: \{1\}:2, \{2\}:3, \{3\}:3, \{4\}:1, \{5\}:3
 \Rightarrow F_1: \{1\}:2, \{2\}:3, \{3\}:3, \{5\}:3
 \Rightarrow C_2: \{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,5\}, \{3,5\}

2. scan T \Rightarrow C_2: \{1,2\}:1, \{1,3\}:2, \{1,5\}:1, \{2,3\}:2, \{2,5\}:3, \{3,5\}:2
 \Rightarrow F_2: \{1,3\}:2, \{2,3\}:2, \{2,5\}:3, \{3,5\}:2
 \Rightarrow C_3: \{2, 3,5\}

3. scan T \Rightarrow C_3: \{2, 3, 5\}:2 \Rightarrow F_3: \{2, 3, 5\}

Dataset T

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>T200</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>T300</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>T400</td>
<td>2, 5</td>
</tr>
</tbody>
</table>

Itemset:count
Algorithm Apriori(\(T\))

\[C_1 \leftarrow \text{init-pass}(T); \]
\[F_1 \leftarrow \{ f \mid f \in C_1, \ f.\text{count}/n \geq \text{minsup}\}; \quad \text{// n: no. of transactions in T} \]

\[\text{for} \ (k = 2; \ F_{k-1} \neq \emptyset; \ k++) \ \text{do} \]
\[C_k \leftarrow \text{candidate-gen}(F_{k-1}); \]
\[\text{for each transaction } t \in T \ \text{do} \]
\[\quad \text{for each candidate } c \in C_k \ \text{do} \]
\[\quad \quad \text{if } c \text{ is contained in } t \ \text{then} \]
\[\quad \quad \quad c.\text{count}++; \]
\[\quad \end{end} \]
\[\end{end} \]
\[F_k \leftarrow \{ c \in C_k \mid c.\text{count}/n \geq \text{minsup}\} \]

\[\text{return } F \leftarrow \bigcup_k F_k; \]
Apriori candidate generation

- The candidate-gen function takes F_{k-1} and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps
 - **join step**: Generate all possible candidate itemsets C_k of length k
 - **prune step**: Remove those candidates in C_k that cannot be frequent.
Candidate-gen function

Function candidate-gen(F_{k-1})

\[C_k \leftarrow \emptyset; \]

forall $f_1, f_2 \in F_{k-1}$

with $f_1 = \{i_1, \ldots, i_{k-2}, i_{k-1}\}$

and $f_2 = \{i_1, \ldots, i_{k-2}, i'_{k-1}\}$

and $i_{k-1} < i'_{k-1}$ do

\[c \leftarrow \{i_1, \ldots, i_{k-1}, i'_{k-1}\}; \quad \text{\textit{// join } f_1 \text{ and } f_2} \]

\[C_k \leftarrow C_k \cup \{c\}; \]

for each (k-1)-subset s of c do

if ($s \notin F_{k-1}$) then

\[\text{delete } c \text{ from } C_k; \quad \text{\textit{// prune}} \]

end

end

return C_k;
An example

- $F_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$

- After join
 - $C_4 = \{\{1, 2, 3, 4\}, \{1, 3, 4, 5\}\}$

- After pruning:
 - $C_4 = \{\{1, 2, 3, 4\}\}$
 because $\{1, 4, 5\}$ is not in F_3 ($\{1, 3, 4, 5\}$ is removed)
Step 2: Generating rules from frequent itemsets

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset X,
 - For each proper nonempty subset A of X,
 - Let $B = X - A$
 - $A \rightarrow B$ is an association rule if
 - Confidence($A \rightarrow B$) ≥ minconf,
 - $\text{support}(A \rightarrow B) = \text{support}(A \cup B) = \text{support}(X)$
 - $\text{confidence}(A \rightarrow B) = \frac{\text{support}(A \cup B)}{\text{support}(A)}$
Generating rules: an example

- Suppose \(\{2,3,4\} \) is frequent, with sup = 50%
 - Proper nonempty subsets: \(\{2,3\}, \{2,4\}, \{3,4\}, \{2\}, \{3\}, \{4\} \), with sup = 50%, 50%, 75%, 75%, 75%, 75% respectively
 - These generate these association rules:
 - \(2,3 \rightarrow 4, \) confidence = 100%
 - \(2,4 \rightarrow 3, \) confidence = 100%
 - \(3,4 \rightarrow 2, \) confidence = 67%
 - \(2 \rightarrow 3,4, \) confidence = 67%
 - \(3 \rightarrow 2,4, \) confidence = 67%
 - \(4 \rightarrow 2,3, \) confidence = 67%
 - All rules have support = 50%
Generating rules: summary

- To recap, in order to obtain $A \rightarrow B$, we need to have support($A \cup B$) and support(A).
- All the required information for confidence computation has already been recorded in itemset generation. No need to see the data T any more.
- This step is not as time-consuming as frequent itemsets generation.
On Apriori Algorithm

Seems to be very expensive

- Level-wise search
- $K =$ the size of the largest itemset
- It makes at most K passes over data
- In practice, K is bounded (10).
- The algorithm is very fast. Under some conditions, all rules can be found in linear time.
- Scale up to large data sets
Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary
Different data formats for mining

The data can be in transaction form or table form

Transaction form:
- a, b
- a, c, d, e
- a, d, f

Table form:
- Attr1 Attr2 Attr3
 - a, b, d
 - b, c, e

Table data need to be converted to transaction form for association mining
From a table to a set of transactions

Table form:

<table>
<thead>
<tr>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,</td>
<td>b,</td>
<td>d</td>
</tr>
<tr>
<td>b,</td>
<td>c,</td>
<td>e</td>
</tr>
</tbody>
</table>

⇒ Transaction form:

(Attr1, a), (Attr2, b), (Attr3, d)
(Attr1, b), (Attr2, c), (Attr3, e)

candidate-gen can be slightly improved. Why?
Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary
Normal association rule mining does not have any target.

It finds all possible rules that exist in data, i.e., any item can appear as a consequent or a condition of a rule.

However, in some applications, the user is interested in some targets.

E.g., the user has a set of text documents from some known topics. He/she wants to find out what words are associated or correlated with each topic.
Problem definition

- Let T be a transaction data set consisting of n transactions.
- Each transaction is also labeled with a class y.
- Let I be the set of all items in T, Y be the set of all class labels and $I \cap Y = \emptyset$.
- A class association rule (CAR) is an implication of the form
 \[X \rightarrow y, \text{ where } X \subseteq I, \text{ and } y \in Y. \]
- The definitions of **support** and **confidence** are the same as those for normal association rules.
An example

- **A text document data set**
 - doc 1: Student, Teach, School : Education
 - doc 2: Student, School : Education
 - doc 3: Teach, School, City, Game : Education
 - doc 4: Baseball, Basketball : Sport
 - doc 5: Basketball, Player, Spectator : Sport
 - doc 6: Baseball, Coach, Game, Team : Sport
 - doc 7: Basketball, Team, City, Game : Sport

- Let $minsup = 20\%$ and $minconf = 60\%$. The following are two examples of class association rules:
 - Student, School \rightarrow Education [sup= 2/7, conf = 2/2]
 - game \rightarrow Sport [sup= 2/7, conf = 2/3]
Mining algorithm

Unlike normal association rules, CARs can be mined directly in one step.

The key operation is to find all ruleitems that have support above \(\minsup \). A ruleitem is of the form:

\[(\text{condset}, y)\]

where \text{condset} is a set of items from \(I \) (i.e., \(\text{condset} \subseteq I \)), and \(y \in Y \) is a class label.

Each ruleitem basically represents a rule:

\(\text{condset} \rightarrow y \),

The Apriori algorithm can be modified to generate CARs
Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary
Sequential pattern mining

- Association rule mining does not consider the order of transactions.
- In many applications such orderings are significant. E.g.,
 - in market basket analysis, it is interesting to know whether people buy some items in sequence,
 - e.g., buying bed first and then bed sheets some time later.
 - In Web usage mining, it is useful to find navigational patterns of users in a Web site from sequences of page visits of users
Basic concepts

- Let \(I = \{i_1, i_2, \ldots, i_m\} \) be a set of items.
- **Sequence**: An ordered list of itemsets.
- **Itemset/element**: A non-empty set of items \(X \subseteq I \).

 We denote a sequence \(s \) by \(\langle a_1 a_2 \ldots a_r \rangle \), where \(a_i \) is an itemset, which is also called an element of \(s \).

 An element (or an itemset) of a sequence is denoted by \(\{x_1, x_2, \ldots, x_k\} \), where \(x_j \in I \) is an item.

 We assume without loss of generality that items in an element of a sequence are in **lexicographic order**.
Basic concepts (contd)

- **Size**: The size of a sequence is the number of elements (or itemsets) in the sequence.

- **Length**: The length of a sequence is the number of items in the sequence.
 - A sequence of length k is called a *k-sequence*.

A sequence $s_1 = \langle a_1a_2...a_r \rangle$ is a **subsequence** of another sequence $s_2 = \langle b_1b_2...b_v \rangle$, or s_2 is a **supersequence** of s_1, if there exist integers $1 \leq j_1 < j_2 < ... < j_{r-1} < j_r \leq v$ such that $a_1 \subseteq b_{j_1}, a_2 \subseteq b_{j_2}, ..., a_r \subseteq b_{j_r}$. We also say that s_2 contains s_1.
An example

- Let $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- Sequence $\langle 3\rangle \langle 4, 5\rangle \langle 8\rangle$ is **contained** in (or is a subsequence of) $\langle 6 \rangle \langle 3, 7\rangle \langle 9\rangle \langle 4, 5, 8\rangle \langle 3, 8\rangle$ because $\{3\} \subseteq \{3, 7\}$, $\{4, 5\} \subseteq \{4, 5, 8\}$, and $\{8\} \subseteq \{3, 8\}$.
- However, $\langle 3\rangle \langle 8\rangle$ is not contained in $\langle 3, 8\rangle$ or vice versa.
- The size of the sequence $\langle 3\rangle \langle 4, 5\rangle \langle 8\rangle$ is 3, and the length of the sequence is 4.
Objective

- Given a set S of **input data sequences** (or sequence database), the problem of mining sequential patterns is to find all the sequences that have a **user-specified minimum support**.

- Each such sequence is called a **frequent sequence**, or a **sequential pattern**.

- The **support** for a sequence is the fraction of total data sequences in S that contains this sequence.
Example

Table 1. A set of transactions sorted by customer ID and transaction time

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>Transaction Time</th>
<th>Transaction (items bought)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>July 20, 2005</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>July 25, 2005</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>July 9, 2005</td>
<td>10, 20</td>
</tr>
<tr>
<td>2</td>
<td>July 14, 2005</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>July 20, 2005</td>
<td>40, 60, 70</td>
</tr>
<tr>
<td>3</td>
<td>July 25, 2005</td>
<td>30, 50, 70</td>
</tr>
<tr>
<td>4</td>
<td>July 25, 2005</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>July 29, 2005</td>
<td>40, 70</td>
</tr>
<tr>
<td>4</td>
<td>August 2, 2005</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>July 12, 2005</td>
<td>90</td>
</tr>
</tbody>
</table>
Example (cond)

Table 2. Data sequences produced from the transaction database in Table 1.

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>Data Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>⟨{30} {90}⟩</td>
</tr>
<tr>
<td>2</td>
<td>⟨{10, 20} {30} {40, 60, 70}⟩</td>
</tr>
<tr>
<td>3</td>
<td>⟨{30, 50, 70}⟩</td>
</tr>
<tr>
<td>4</td>
<td>⟨{30} {40, 70} {90}⟩</td>
</tr>
<tr>
<td>5</td>
<td>⟨{90}⟩</td>
</tr>
</tbody>
</table>

Table 3. The final output sequential patterns

<table>
<thead>
<tr>
<th></th>
<th>Sequential Patterns with Support (\geq 25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-sequences</td>
<td>⟨{30}⟩, ⟨{40}⟩, ⟨{70}⟩, ⟨{90}⟩</td>
</tr>
<tr>
<td>2-sequences</td>
<td>⟨{30} {40}⟩, ⟨{30} {70}⟩, ⟨{30} {90}⟩, ⟨{40, 70}⟩</td>
</tr>
<tr>
<td>3-sequences</td>
<td>⟨{30} {40, 70}⟩</td>
</tr>
</tbody>
</table>
GSP mining algorithm

- Very similar to the Apriori algorithm

Algorithm GSP(S)
1. $C_1 \leftarrow \text{init-pass}(S);$ // the first pass over S
2. $F_1 \leftarrow \{\langle \{f\}\rangle | f \in C_1, f.\text{count}/n \geq \text{mins}up\};$ // n is the number of sequences in S
3. **for** $(k = 2; F_{k-1} \neq \emptyset; k++)$ **do** // subsequent passes over S
 4. $C_k \leftarrow \text{candidate-gen-SPM}(F_{k-1});$
 5. **for** each data sequence $s \in S$ **do** // scan the data once
 6. **for** each candidate $c \in C_k$ **do**
 7. if c is contained in s then // increment the support count
 8. $c.\text{count}++;$
 9. **end**
10. **end**
11. $F_k \leftarrow \{c \in C_k | c.\text{count}/n \geq \text{mins}up\}$
12. **end**
13. return $\bigcup_k F_k$;

Fig. 12. The GSP Algorithm for generating sequential patterns
Candidate generation

Function candidate-gen-SPM(F_{k-1})

1. **Join step.** Candidate sequences are generated by joining F_{k-1} with F_{k-1}. A sequence s_1 joins with s_2 if the subsequence obtained by dropping the first item of s_1 is the same as the subsequence obtained by dropping the last item of s_2. The candidate sequence generated by joining s_1 with s_2 is the sequence s_1 extended with the last item in s_2. There are two cases:
 - the added item forms a separate element if it was a separate element in s_2, and is appended at the end of s_1 in the merged sequence, and
 - the added item is part of the last element of s_1 in the merged sequence otherwise.

When joining F_1 with F_1, we need to add the item in s_2 both as part of an itemset and as a separate element. That is, joining $\langle \{x\} \rangle$ with $\langle \{y\} \rangle$ gives us both $\langle \{x, y\} \rangle$ and $\langle \{x\} \{y\} \rangle$. Note that x and y in $\{x, y\}$ are ordered.

2. **Prune step.** A candidate sequence is pruned if any one of its $(k-1)$-subsequence is infrequent (without minimum support).

Fig. 13. The candidate-gen-SPM() function
An example

Table 4. Candidate generation: an example

<table>
<thead>
<tr>
<th>Frequent 3-sequences</th>
<th>Candidate 4-sequences after joining</th>
<th>Candidate 4-sequences after pruning</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨{1, 2} {4}⟩</td>
<td>⟨{1, 2} {4, 5}⟩</td>
<td>⟨{1, 2} {4, 5}⟩</td>
</tr>
<tr>
<td>⟨{1, 2} {5}⟩</td>
<td>⟨{1, 2} {4} {6}⟩</td>
<td></td>
</tr>
<tr>
<td>⟨{1} {4, 5}⟩</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⟨{1, 4} {6}⟩</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⟨{2} {4, 5}⟩</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⟨{2} {4} {6}⟩</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary
Summary

- Association rule mining has been extensively studied in the data mining community.
- So is sequential pattern mining.
- There are many efficient algorithms and model variations.

Other related work includes
 - Multi-level or generalized rule mining
 - Constrained rule mining
 - Incremental rule mining
 - Maximal frequent itemset mining
 - Closed itemset mining
 - Rule interestingness and visualization
 - Parallel algorithms
 - …