Systems
Systems are Transformations

A discrete-time **system** \mathcal{H} is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$

- Systems manipulate the information in signals
- Examples:
 - A speech recognition system converts acoustic waves of speech into text
 - A radar system transforms the received radar pulse to estimate the position and velocity of targets
 - A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
 - A 30 day moving average smooths out the day-to-day variability in a stock price
Recall that there are two kinds of signals: infinite-length and finite-length.

Accordingly, we will consider two kinds of systems:

1. Systems that transform an infinite-length-signal x into an infinite-length signal y

2. Systems that transform a length-N signal x into a length-N signal y
 (Such systems can also be used to process periodic signals with period N)

For generality, we will assume that the input and output signals are complex valued.
System Examples (1)

- **Identity**
 \[y[n] = x[n] \quad \forall n \]

- **Scaling**
 \[y[n] = 2x[n] \quad \forall n \]

- **Offset**
 \[y[n] = x[n] + 2 \quad \forall n \]

- **Square signal**
 \[y[n] = (x[n])^2 \quad \forall n \]

- **Shift**
 \[y[n] = x[n + 2] \quad \forall n \]

- **Decimate**
 \[y[n] = x[2n] \quad \forall n \]

- **Square time**
 \[y[n] = x[n^2] \quad \forall n \]
System Examples (2)

- **Shift system** \((m \in \mathbb{Z} \text{ fixed})\)
 \[
y[n] = x[n - m] \quad \forall n
\]

- **Moving average** (combines shift, sum, scale)
 \[
y[n] = \frac{1}{2}(x[n] + x[n - 1]) \quad \forall n
\]

- **Recursive average**
 \[
y[n] = x[n] + \alpha y[n - 1] \quad \forall n
\]
Summary

- Systems transform one signal into another to manipulate information

- We will consider two kinds of systems:
 1. Systems that transform an infinite-length-signal x into an infinite-length signal y
 2. Systems that transform a length-N signal x into a length-N signal y
 (Such systems can also be used to process periodic signals with period N)
Linear Systems
A system \mathcal{H} is (zero-state) **linear** if it satisfies the following two properties:

1. **Scaling**

 \[\mathcal{H}\{\alpha x\} = \alpha \mathcal{H}\{x\} \quad \forall \alpha \in \mathbb{C} \]

2. **Additivity**

 If $y_1 = \mathcal{H}\{x_1\}$ and $y_2 = \mathcal{H}\{x_2\}$ then

 \[\mathcal{H}\{x_1 + x_2\} = y_1 + y_2 \]
A system that is not linear is called **nonlinear**

To prove that a system is linear, you must prove rigorously that it has both the scaling and additivity properties for *arbitrary* input signals.

To prove that a system is nonlinear, it is sufficient to exhibit a **counterexample**
Example: Moving Average is Linear (Scaling)

\[x[n] \xrightarrow{\mathcal{H}} y[n] = \frac{1}{2}(x[n] + x[n - 1]) \]

- **Scaling**: (Strategy to prove – Scale input \(x \) by \(\alpha \in \mathbb{C} \), compute output \(y \) via the formula at top, and verify that it is scaled as well)

 - Let

 \[x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C} \]

 - Let \(y' \) denote the output when \(x' \) is input (that is, \(y' = \mathcal{H}\{x'\} \))

 - Then

 \[y'[n] = \frac{1}{2}(x'[n] + x'[n - 1]) = \frac{1}{2}(\alpha x[n] + \alpha x[n - 1]) = \alpha \left(\frac{1}{2}(x[n] + x[n - 1]) \right) = \alpha y[n] \checkmark \]
Example: Moving Average is Linear (Additivity)

\[x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2} (x[n] + x[n-1]) \]

Additivity: (Strategy to prove – Input two signals into the system and verify that the output equals the sum of the respective outputs)

- Let
 \[x'[n] = x_1[n] + x_2[n] \]
- Let \(y'/y_1/y_2 \) denote the output when \(x'/x_1/x_2 \) is input
- Then
 \[y'[n] = \frac{1}{2} (x'[n] + x'[n-1]) = \frac{1}{2} (\{x_1[n] + x_2[n]\} + \{x_1[n-1] + x_2[n-1]\}) \]
 \[= \frac{1}{2} (x_1[n] + x_1[n-1]) + \frac{1}{2} (x_2[n] + x_2[n-1]) = y_1[n] + y_2[n] \]
Example: Squaring is Nonlinear

$$x[n] \rightarrow H \rightarrow y[n] = (x[n])^2$$

- **Additivity**: Input two signals into the system and see what happens
 - Let
 $$y_1[n] = (x_1[n])^2 \quad y_2[n] = (x_2[n])^2$$
 - Set
 $$x'[n] = x_1[n] + x_2[n]$$
 - Then
 $$y'[n] = (x'[n])^2 = (x_1[n] + x_2[n])^2 = (x_1[n])^2 + 2x_1[n]x_2[n] + (x_2[n])^2 \neq y_1[n] + y_2[n]$$
 - Nonlinear!
Linear or Nonlinear? You Be the Judge! (1)

- **Identity**
 \[y[n] = x[n] \quad \forall n \]

- **Scaling**
 \[y[n] = 2x[n] \quad \forall n \]

- **Offset**
 \[y[n] = x[n] + 2 \quad \forall n \]

- **Square signal**
 \[y[n] = (x[n])^2 \quad \forall n \]

- **Shift**
 \[y[n] = x[n + 2] \quad \forall n \]

- **Decimate**
 \[y[n] = x[2n] \quad \forall n \]

- **Square time**
 \[y[n] = x[n^2] \quad \forall n \]
Linear or Nonlinear? You Be the Judge! (2)

- Shift system \((m \in \mathbb{Z} \text{ fixed})\)
 \[
y[n] = x[n - m] \quad \forall n
\]

- Moving average (combines shift, sum, scale)
 \[
y[n] = \frac{1}{2} (x[n] + x[n - 1]) \quad \forall n
\]

- Recursive average
 \[
y[n] = x[n] + \alpha y[n - 1] \quad \forall n
\]
Matrix Multiplication and Linear Systems

- Matrix multiplication (aka Linear Combination) is a fundamental signal processing system

- **Fact 1:** Matrix multiplications are linear systems (easy to show at home, but do it!)

 \[y = \mathbf{H} x \]

 \[y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m] \]

 (Note: This formula applies for both infinite-length and finite-length signals)

- **Fact 2:** All linear systems can be expressed as matrix multiplications

- As a result, we will use the matrix viewpoint of linear systems extensively in the sequel

- Try at home: Express all of the linear systems in the examples above in matrix form
Matrix Multiplication and Linear Systems in Pictures

- Linear system

\[
y = Hx
\]

\[
y[n] = \sum_m [H]_{n,m} x[m] = \sum_m h_{n,m} x[m]
\]

where \(h_{n,m} = [H]_{n,m} \) represents the row-\(n \), column-\(m \) entry of the matrix \(H \)
System Output as a Linear Combination of Columns

- Linear system

\[y = \mathbf{H} x \]

\[y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m] = \sum_{m} h_{n,m} x[m] \]

where \(h_{n,m} = [\mathbf{H}]_{n,m} \) represents the row-\(n \), column-\(m \) entry of the matrix \(\mathbf{H} \)
Linear system

\[y = Hx \]

\[y[n] = \sum_{m} [H]_{n,m} x[m] = \sum_{m} h_{n,m} x[m] \]

where \(h_{n,m} = [H]_{n,m} \) represents the row-\(n \), column-\(m \) entry of the matrix \(H \)
Summary

- Linear systems satisfy (1) scaling and (2) additivity

- To show a system is linear, you have to prove it rigorously assuming arbitrary inputs (work!)

- To show a system is nonlinear, you can just exhibit a counterexample (often easy!)

- Linear systems \equiv matrix multiplication

 - Justifies our emphasis on linear vector spaces and matrices
 - The output signal y equals the linear combination of the columns of H weighted by the entries in x
 - Alternatively, the output value $y[n]$ equals the inner product between row n of H with x
Time-Invariant Systems
A system \mathcal{H} processing infinite-length signals is **time-invariant** (shift-invariant) if a time shift of the input signal creates a corresponding time shift in the output signal.

\[
x[n] \xrightarrow{\mathcal{H}} y[n] \\
x[n - q] \xrightarrow{\mathcal{H}} y[n - q]
\]

- Intuition: A time-invariant system behaves the same no matter when the input is applied.
- A system that is not time-invariant is called **time-varying**.
Example: Moving Average is Time-Invariant

\[
x[n] \xrightarrow{\mathcal{H}} y[n] = \frac{1}{2} (x[n] + x[n-1])
\]

- Let

\[
x'[n] = x[n-q], \quad q \in \mathbb{Z}
\]

- Let \(y' \) denote the output when \(x' \) is input (that is, \(y' = \mathcal{H}\{x'\} \))

- Then

\[
y'[n] = \frac{1}{2} (x'[n] + x'[n-1]) = \frac{1}{2} (x[n-q] + x[n-q-1]) = y[n-q]
\]
Example: Decimation is Time-Varying

![System Diagram]

\[x[n] \rightarrow H \rightarrow y[n] = x[2n] \]

- This system is time-varying; demonstrate with a counter-example

- Let

\[x'[n] = x[n - 1] \]

- Let \(y' \) denote the output when \(x' \) is input (that is, \(y' = H\{x'\} \))

- Then

\[y'[n] = x'[2n] = x[2n - 1] \neq x[2(n - 1)] = y[n - 1] \]
Time-Invariant or Time-Varying? You Be the Judge! (1)

- **Identity**
 \[y[n] = x[n] \quad \forall n \]

- **Scaling**
 \[y[n] = 2 \, x[n] \quad \forall n \]

- **Offset**
 \[y[n] = x[n] + 2 \quad \forall n \]

- **Square signal**
 \[y[n] = (x[n])^2 \quad \forall n \]

- **Shift**
 \[y[n] = x[n + 2] \quad \forall n \]

- **Decimate**
 \[y[n] = x[2n] \quad \forall n \]

- **Square time**
 \[y[n] = x[n^2] \quad \forall n \]
Time-Invariant or Time-Varying? You Be the Judge! (2)

- Shift system \((m \in \mathbb{Z} \text{ fixed})\)
 \[y[n] = x[n - m] \quad \forall n \]

- Moving average (combines shift, sum, scale)
 \[y[n] = \frac{1}{2} (x[n] + x[n - 1]) \quad \forall n \]

- Recursive average
 \[y[n] = x[n] + \alpha y[n - 1] \quad \forall n \]
Time-Invariant Systems (Finite-Length Signals)

A system \mathcal{H} processing length-N signals is **time-invariant** (shift-invariant) if a circular time shift of the input signal creates a corresponding circular time shift in the output signal.

\[
\begin{align*}
 x[n] & \quad \xrightarrow{\mathcal{H}} \quad y[n] \\
 x[(n - q)_N] & \quad \xrightarrow{\mathcal{H}} \quad y[(n - q)_N]
\end{align*}
\]

- Intuition: A time-invariant system behaves the same no matter when the input is applied.

- A system that is not time-invariant is called **time-varying**.
Summary

- Time-invariant systems behave the same no matter when the input is applied

- Infinite-length signals: Invariance with respect to any integer time shift

- Finite-length signals: Invariance with respect to a circular time shift

- To show a system is **time-invariant**, you have to prove it rigorously assuming arbitrary inputs (work!)

- To show a system is **time-varying**, you can just exhibit a counterexample (often easy!)
Linear Time-Invariant Systems
A system \mathcal{H} is **linear time-invariant** (LTI) if it is both linear and time-invariant.

LTI systems are the foundation of signal processing and the main subject of this course.
LTI or Not? You Be the Judge! (1)

- **Identity**
 \[y[n] = x[n] \quad \forall n \]

- **Scaling**
 \[y[n] = 2x[n] \quad \forall n \]

- **Offset**
 \[y[n] = x[n] + 2 \quad \forall n \]

- **Square signal**
 \[y[n] = (x[n])^2 \quad \forall n \]

- **Shift**
 \[y[n] = x[n + 2] \quad \forall n \]

- **Decimate**
 \[y[n] = x[2n] \quad \forall n \]

- **Square time**
 \[y[n] = x[n^2] \quad \forall n \]
Shift system \((m \in \mathbb{Z} \text{ fixed})\)

\[y[n] = x[n - m] \quad \forall n \]

Moving average (combines shift, sum, scale)

\[y[n] = \frac{1}{2} (x[n] + x[n - 1]) \quad \forall n \]

Recursive average

\[y[n] = x[n] + \alpha y[n - 1] \quad \forall n \]
Matrix Multiplication and LTI Systems (Infinite-Length Signals)

- Recall that all linear systems can be expressed as matrix multiplications

\[y = H x \]

\[y[n] = \sum_{m} [H]_{n,m} x[m] \]

Here \(H \) is a matrix with infinitely many rows and columns

- Let \(h_{n,m} = [H]_{n,m} \) represent the row-\(n \), column-\(m \) entry of the matrix \(H \)

\[y[n] = \sum_{m} h_{n,m} x[m] \]

- When the linear system is also shift invariant, \(H \) has a special structure
Matrix Structure of LTI Systems (Infinite-Length Signals)

- **Linear system** for infinite-length signals can be expressed as

\[y[n] = \mathcal{H}\{x[n]\} = \sum_{m=-\infty}^{\infty} h_{n,m} x[m], \quad -\infty < n < \infty \]

- Enforcing **time invariance** implies that for all \(q \in \mathbb{Z} \)

\[\mathcal{H}\{x[n-q]\} = \sum_{m=-\infty}^{\infty} h_{n,m} x[m-q] = y[n-q] \]

- Change of variables: \(n' = n - q \) and \(m' = m - q \)

\[\mathcal{H}\{x[n']\} = \sum_{m'=-\infty}^{\infty} h_{n'+q,m'+q} x[m'] = y[n'] \]

- Comparing first and third equations, we see that for an **LTI system**

\[h_{n,m} = h_{n+q,m+q} \quad \forall q \in \mathbb{Z} \]
For an LTI system with infinite-length signals

\[h_{n,m} = h_{n+q,m+q} \quad \forall q \in \mathbb{Z} \]

\[
H = \begin{bmatrix}
\vdots & \vdots & \vdots & \cdots \\
\cdots & h_{-1,-1} & h_{-1,0} & h_{-1,1} & \cdots \\
\cdots & h_{0,-1} & h_{0,0} & h_{0,1} & \cdots \\
\cdots & h_{1,-1} & h_{1,0} & h_{1,1} & \cdots \\
\vdots & \vdots & \vdots & \cdots \\
\end{bmatrix}
= \begin{bmatrix}
\vdots & \vdots & \vdots & \cdots \\
\cdots & h_{0,0} & h_{-1,0} & h_{-2,0} & \cdots \\
\cdots & h_{1,0} & h_{0,0} & h_{-1,0} & \cdots \\
\cdots & h_{2,0} & h_{1,0} & h_{0,0} & \cdots \\
\vdots & \vdots & \vdots & \cdots \\
\end{bmatrix}
\]

Entries on the matrix diagonals are the same – Toeplitz matrix
LTI Systems are Toeplitz Matrices (Infinite-Length Signals) (2)

- All of the entries in a Toeplitz matrix can be expressed in terms of the entries of the
 - **0-th column:** \(h[n] = h_{n,0} \)
 - **Time-reversed 0-th row:** \(h[m] = h_{0,-m} \)

\[
H = \begin{bmatrix}
\vdots & \vdots & \vdots & \vdots \\
\cdots & h_{0,0} & h_{-1,0} & h_{-1,1} & \cdots \\
\cdots & h_{1,0} & h_{0,0} & h_{-1,0} & \cdots \\
\cdots & h_{2,0} & h_{1,0} & h_{0,0} & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\end{bmatrix} = \begin{bmatrix}
\vdots & \vdots & \vdots & \vdots \\
\cdots & h[0] & h[-1] & h[-2] & \cdots \\
\cdots & h[1] & h[0] & h[-1] & \cdots \\
\cdots & h[2] & h[1] & h[0] & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\]

- **Row-\(n\), column-\(m\) entry of the matrix** \([H]_{n,m} = h_{n,m} = h[n-m] \)
LTI Systems are Toeplitz Matrices (Infinite-Length Signals) (3)

- All of the entries in a Toeplitz matrix can be expressed in terms of the entries of the
 - **0-th column:** \(h[n] = h_{n,0} \) (this is an infinite-length signal/column vector; call it \(h \))
 - **Time-reversed 0-th row:** \(h[m] = h_{0,-m} \)

- Example: Snippet of a Toeplitz matrix

\[
[H]_{n,m} = h_{n,m} = h[n - m]
\]

- Note the diagonals!
Matrix Structure of LTI Systems (Finite-Length Signals)

- **Linear system** for signals of length N can be expressed as

\[y[n] = \mathcal{H}\{x[n]\} = \sum_{m=0}^{N-1} h_{n,m} x[m], \quad 0 \leq n \leq N - 1 \]

- Enforcing **time invariance** implies that for all $q \in \mathbb{Z}$

\[\mathcal{H}\{x[(n-q)N]\} = \sum_{m=0}^{N-1} h_{n,m} x[(m-q)N] = y[(n-q)N] \]

- Change of variables: $n' = n - q$ and $m' = m - q$

\[\mathcal{H}\{x[(n')N]\} = \sum_{m'=-q}^{M-1-q} h_{(n'+q)N,(m'+q)N} x[(m')N] = y[(n')N] \]

- Comparing first and third equations, we see that for an **LTI system**

\[h_{n,m} = h_{(n+q)N,(m+q)N} \quad \forall q \in \mathbb{Z} \]
LTI Systems are Circulent Matrices (Finite-Length Signals) (1)

- For an LTI system with length-\(N\) signals

\[h_{n,m} = h_{(n+q)N,(m+q)N} \quad \forall q \in \mathbb{Z} \]

\[
\begin{bmatrix}
 h_{0,0} & h_{0,1} & h_{0,2} & \cdots & h_{0,N-1} \\
 h_{1,0} & h_{1,1} & h_{1,2} & \cdots & h_{1,N-1} \\
 h_{2,0} & h_{2,1} & h_{2,2} & \cdots & h_{2,N-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 h_{N-1,0} & h_{N-1,1} & h_{N-1,2} & \cdots & h_{N-1,N-1}
\end{bmatrix}
=
\begin{bmatrix}
 h_{0,0} & h_{N-1,0} & h_{N-2,0} & \cdots & h_{1,0} \\
 h_{1,0} & h_{0,0} & h_{N-1,0} & \cdots & h_{2,0} \\
 h_{2,0} & h_{1,0} & h_{0,0} & \cdots & h_{3,0} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 h_{N-1,0} & h_{N-2,0} & h_{N-3,0} & \cdots & h_{0,0}
\end{bmatrix}
\]

- Entries on the matrix diagonals are the same + circular wraparound – circulent matrix
LTI Systems are Circulent Matrices (Finite-Length Signals) (2)

- All of the entries in a circulent matrix can be expressed in terms of the entries of the
 - 0-th column: \(h[n] = h_{n,0} \)
 - Circularly time-reversed 0-th row: \(h[m] = h_{0,(-m)N} \)

\[
\begin{bmatrix}
 h_{0,0} & h_{N-1,0} & h_{N-2,0} & \cdots & h_{1,0} \\
 h_{1,0} & h_{0,0} & h_{N-1,0} & \cdots & h_{2,0} \\
 h_{2,0} & h_{1,0} & h_{0,0} & \cdots & h_{3,0} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 h_{N-1,0} & h_{N-2,0} & h_{N-3,0} & \cdots & h_{0,0}
\end{bmatrix}
= \begin{bmatrix}
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 h[N-1] & h[N-2] & h[N-3] & \cdots & h[0]
\end{bmatrix}
\]

- Row-\(n \), column-\(m \) entry of the matrix \([H]_{n,m} = h_{n,m} = h[(n-m)N] \)
LTI Systems are Circulent Matrices (Finite-Length Signals) (3)

- All of the entries in a circulent matrix can be expressed in terms of the entries of the
 - 0-th column: \(h[n] = h_{n,0} \) (this is a signal/column vector; call it \(h \))
 - Circularly time-reversed 0-th row: \(h[m] = h_{0,-m} \)

- Example: Circulent matrix

\[
[H]_{n,m} = h_{n,m} = h[(n - m)_N]
\]

- Note the diagonals and circulent shifts!
Summary

- LTI = Linear + Time-Invariant

- Fundamental signal processing system (and our focus for the rest of the course)

- Infinite-length signals: System = Toeplitz matrix \mathbf{H}
 - $[\mathbf{H}]_{n,m} = h_{n,m} = h[n - m]$

- Finite-length signals: System = Circulant matrix \mathbf{H}
 - $[\mathbf{H}]_{n,m} = h_{n,m} = h[(n - m)_N]$
Impulse Response
Recall: LTI Systems are Toeplitz Matrices (Infinite-Length Signals)

LTI system = multiplication by infinitely large Toeplitz matrix H: $y = Hx$

All of the entries in H can be obtained from the:

- **0-th column:** $h[n] = h_{n,0}$ (this is a signal/column vector; call it h)
- **Time-reversed 0-th row:** $h[m] = h_{0,-m}$

$[H]_{n,m} = h_{n,m} = h[n-m]$

Columns/rows of H are shifted versions of the 0-th column/row
Impulse Response (Infinite-Length Signals)

- The 0-th column of the matrix H – the column vector h – has a special interpretation.

- Compute the output when the input is a **delta function** (impulse):
 \[
 \delta[n] = \begin{cases}
 1 & n = 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

This suggests that we call h the **impulse response** of the system.
Impulse Response from Formulas (Infinite-Length Signals)

- General formula for LTI matrix multiplication

\[y[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m] \]

- Let the input \(x[n] = \delta[n] \) and compute

\[\sum_{m=-\infty}^{\infty} h[n - m] \delta[m] = h[n] \]

- The impulse response characterizes an LTI system
 (that is, carries all of the information contained in the matrix \(H \))

\[x \rightarrow h \rightarrow y \]
Example: Impulse Response of the Scaling System

Consider system for infinite-length signals; finite-length signal case is similar

- Scaling system: \(y[n] = H\{x[n]\} = 2x[n] \)
- Impulse response: \(h[n] = H\{\delta[n]\} = 2\delta[n] \)
- Toeplitz system matrix:

\[
[H]_{n,m} = h[n - m] = 2\delta[n - m]
\]
Example: Impulse Response of the Shift System

Consider system for infinite-length signals; finite-length signal case uses circular shift

- Scaling system: \(y[n] = \mathcal{H}\{x[n]\} = x[n-2] \)
- Impulse response: \(h[n] = \mathcal{H}\{\delta[n]\} = \delta[n-2] \)
- Toeplitz system matrix:

\[
[H]_{n,m} = h[n - m] = \delta[n - m - 2]
\]
Example: Impulse Response of the Moving Average System

- Consider system for infinite-length signals; finite-length signal case is similar

- Moving average system: \(y[n] = \mathcal{H}\{x[n]\} = \frac{1}{2} (x[n] + x[n-1]) \)

- Impulse response: \(h[n] = \mathcal{H}\{\delta[n]\} = \frac{1}{2} (\delta[n] + \delta[n-1]) \)

- Toeplitz system matrix:
 \[
 [H]_{n,m} = h[n - m] = \frac{1}{2} (\delta[n - m] + \delta[n - m - 1])
 \]
Example: Impulse Response of the Recursive Average System

Consider system for infinite-length signals; finite-length signal case is similar

Recursive average system: \(y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1] \)

Impulse response: \(h[n] = \mathcal{H}\{\delta[n]\} = \alpha^n u[n] \)

Toeplitz system matrix:

\[
[H]_{n,m} = h[n - m] = \alpha^{n-m} u[n - m]
\]
Recall: LTI Systems are Circulent Matrices (Finite-Length Signals)

\[x \xrightarrow{\mathcal{H}} y \]

- LTI system = multiplication by \(N \times N \) circulant matrix \(\mathbf{H} \):
 \[y = \mathbf{H}x \]

- All of the entries in \(\mathbf{H} \) can be obtained from the
 - 0-th column:
 \[h[n] = h_{n,0} \] (this is a signal/column vector; call it \(h \))
 - Time-reversed 0-th row:
 \[h[m] = h_{0,(-m)_N} \]

- \([\mathbf{H}]_{n,m} = h_{n,m} = h[(n - m)_N] \)

- Columns/rows of \(\mathbf{H} \) are circularly shifted versions of the 0-th column/row
Impulse Response (Finite-Length Signals)

- The 0-th column of the matrix H – the column vector h – has a special interpretation.

- Compute the output when the input is a delta function (impulse):
 \[
 \delta[n] = \begin{cases}
 1 & n = 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

\[
H \delta = h
\]

- This suggests that we call h the impulse response of the system.
Impulse Response from Formulas (Finite-Length Signals)

- General formula for LTI matrix multiplication

\[
y[n] = \sum_{m=0}^{N-1} h[(n - m)N] x[m]
\]

- Let the input \(x[n] = \delta[n] \) and compute

\[
\sum_{m=0}^{N-1} h[(n - m)N] \delta[m] = h[n] \quad \checkmark
\]

\[\delta \rightarrow \mathcal{H} \rightarrow h\]

- The impulse response characterizes an LTI system (that is, carries all of the information contained in the matrix \(\mathbf{H} \))

\[x \rightarrow h \rightarrow y\]
Summary

- **LTI system** = multiplication by infinite-sized Toeplitz or $N \times N$ circulant matrix H: $y = Hx$

- The **impulse response** h of an LTI system = the response to an impulse δ
 - The impulse response is the 0-th column of the matrix H
 - The impulse response characterizes an LTI system

- Formula for the output signal y in terms of the input signal x and the impulse response h
 - Infinite-length signals
 \[y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m], \quad -\infty < n < \infty \]
 - Length-N signals
 \[y[n] = \sum_{m=0}^{N-1} h[(n-m)N] x[m], \quad 0 \leq n \leq N - 1 \]
Convolution, Part 1
(Infinite-Length Signals)
Three Ways to Compute the Output of an LTI System Given the Input

\[
\begin{align*}
 x &\rightarrow \mathcal{H} & \rightarrow y \\
\end{align*}
\]

1. If \(\mathcal{H} \) is defined in terms of a formula or algorithm, apply the input \(x \) and compute \(y[n] \) at each time point \(n \in \mathbb{Z} \)
 - This is how systems are usually applied in computer code and hardware

2. Find the impulse response \(h \) (by inputting \(x[n] = \delta[n] \)), form the Toeplitz system matrix \(\mathbf{H} \), and multiply by the (infinite-length) input signal vector \(x \) to obtain \(y = \mathbf{H} x \)
 - This is not usually practical but is useful for conceptual purposes

3. Find the impulse response \(h \) and apply the formula for matrix/vector product for each \(n \in \mathbb{Z} \)
 \[
 y[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m] = x[n] \ast h[n]
 \]
 - This is called convolution and is both conceptually and practically useful (Matlab command: \texttt{conv})
Convolution as a Sequence of Inner Products

- Convolution formula

\[y[n] = x[n] \ast h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m] \]

- To compute the entry \(y[n] \) in the output vector \(y \):
 1. **Time reverse** the impulse response vector \(h \) and **shift** it \(n \) time steps to the right (delay)
 2. Compute the **inner product** between the shifted impulse response and the input vector \(x \)

- Repeat for every \(n \)
A Seven-Step Program for Computing Convolution By Hand

\[y[n] = x[n] \ast h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m] \]

- **Step 1**: Decide which of \(x \) or \(h \) you will flip and shift; you have a choice since \(x \ast h = h \ast x \)

- **Step 2**: Plot \(x[m] \) as a function of \(m \)

- **Step 3**: Plot the time-reversed impulse response \(h[-m] \)

- **Step 4**: To compute \(y \) at the time point \(n \), plot the time-reversed impulse response after it has been shifted to the right (delayed) by \(n \) time units: \(h[-(m-n)] = h[n-m] \)

- **Step 5**: \(y[n] = \) the inner product between the signals \(x[m] \) and \(h[n-m] \)
 (Note: for complex signals, do not complex conjugate the second signal in the inner product)

- **Step 6**: Repeat for all \(n \) of interest (potentially all \(n \in \mathbb{Z} \))

- **Step 7**: Plot \(y[n] \) and perform a reality check to make sure your answer seems reasonable
First Convolution Example (1)

\[y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m] \]

- Convolve a unit pulse with itself
First Convolution Example (2)

\[y[n] = x[n] \ast h[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m] \]
Convolution, Part 2
(Infinite-Length Signals)
A Seven-Step Program for Computing Convolution By Hand

\[y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m] \]

- **Step 1:** Decide which of \(x \) or \(h \) you will flip and shift; you have a choice since \(x * h = h * x \)

- **Step 2:** Plot \(x[m] \) as a function of \(m \)

- **Step 3:** Plot the time-reversed impulse response \(h[-m] \)

- **Step 4:** To compute \(y \) at the time point \(n \), plot the time-reversed impulse response after it has been shifted to the right (delayed) by \(n \) time units: \(h[-(m - n)] = h[n - m] \)

- **Step 5:** \(y[n] \) = the inner product between the signals \(x[m] \) and \(h[n - m] \)
 (Note: for complex signals, do not complex conjugate the second signal in the inner product)

- **Step 6:** Repeat for all \(n \) of interest (potentially all \(n \in \mathbb{Z} \))

- **Step 7:** Plot \(y[n] \) and perform a reality check to make sure your answer seems reasonable
Second Convolution Example (1)

- Recall the **recursive average system**

\[
y[n] = x[n] + \frac{1}{2} y[n - 1]
\]

and its impulse response \(h[n] = \left(\frac{1}{2}\right)^n u[n] \)

- Compute the output \(y \) when the input is a unit step \(x[n] = u[n] \)
Second Convolution Example (2)

\[y[n] = h[n] \ast x[n] = \sum_{m=-\infty}^{\infty} h[m] x[n-m] \]

Recall the super useful formula for the \textbf{finite geometric series}

\[\sum_{k=N_1}^{N_2} a^k = \frac{a^{N_1} - a^{N_2+1}}{1-a}, \quad N_1 \leq N_2 \]
Second Convolution Example (3)

\[y[n] = h[n] \ast x[n] = \sum_{m=\infty}^{\infty} h[m] x[n - m] \]
Summary

- **Convolution** formula for the output y of an LTI system given the input x and the impulse response h (infinite-length signals)

$$y[n] = x[n] \ast h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- Convolution is a sequence of inner products between the signal and the shifted, time-reversed impulse response

- Seven-step program for computing convolution by hand

- Check your work and compute large convolutions using Matlab command `conv`

- Practice makes perfect!
Circular Convolution
(Finite-Length Signals)
Circular Convolution as a Sequence of Inner Products

- Convolution formula

\[
y[n] = x[n] \otimes h[n] = \sum_{m=0}^{N-1} h[(n-m)N] x[m]
\]

- To compute the entry \(y[n] \) in the output vector \(y \):
 1. **Circularly time reverse** the impulse response vector \(h \) and **circularly shift** it \(n \) time steps to the right (delay)
 2. Compute the **inner product** between the shifted impulse response and the input vector \(x \)

- Repeat for every \(n \)
A Seven-Step Program for Computing Circular Convolution By Hand

\[y[n] = x[n] \ast h[n] = \sum_{m=0}^{N-1} h[(n - m)_N] x[m] \]

- **Step 1:** Decide which of \(x \) or \(h \) you will flip and shift; you have a choice since \(x \ast h = h \ast x \)

- **Step 2:** Plot \(x[m] \) as a function of \(m \) on a clock with \(N \) “hours”

- **Step 3:** Plot the circularly time-reversed impulse response \(h[(-m)_N] \) on a clock with \(N \) “hours”

- **Step 4:** To compute \(y \) at the time point \(n \), plot the time-reversed impulse response after it has been shifted counter-clockwise (delayed) by \(n \) time units: \(h[(-(m-n))_N] = h[(n-m)_N] \)

- **Step 5:** \(y[n] \) = the inner product between the signals \(x[m] \) and \(h[(n - m)_N] \)
 (Note: for complex signals, do not complex conjugate the second signal in the inner product)

- **Step 6:** Repeat for all \(n = 0, 1, \ldots, N - 1 \)

- **Step 7:** Plot \(y[n] \) and perform a reality check to make sure your answer seems reasonable
Circular Convolution Example (1)

\[
y[n] = x[n] \ast h[n] = \sum_{m=0}^{N-1} h[(n - m) \mod N] x[m]
\]

For \(N = 8\), circularly convolve a sinusoid \(x\) and a ramp \(h\)
Circular Convolution Example (2)

\[y[n] = x[n] \ast h[n] = \sum_{m=0}^{N-1} h[(n - m)_N] x[m] \]
Summary

- **Circular convolution** formula for the output y of an LTI system given the input x and the impulse response h (length-N signals)

 $$y[n] = x[n] \otimes h[n] = \sum_{m=0}^{N-1} h[(n - m)N] x[m]$$

- Circular convolution is a sequence of inner products between the signal and the circularly shifted, time-reversed impulse response

- Seven-step program for computing circular convolution by hand

- Check your work and compute large circular convolutions using Matlab command `cconv`

- Practice makes perfect!
Properties of Convolution
Properties of Convolution

- Input signal x, LTI system impulse response h, and output signal y are related by the convolution
 - Infinite-length signals
 \[y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m], \quad -\infty < n < \infty \]
 - Length-N signals
 \[y[n] = x[n] \otimes h[n] = \sum_{m=0}^{N-1} h[(n-m)N] x[m], \quad 0 \leq n \leq N - 1 \]

- Thanks to the Toeplitz/circulcent structure of LTI systems, convolution has very special properties
- We will emphasize infinite-length convolution, but similar arguments hold for circular convolution except where noted
Convolution is Commutative

- **Fact**: Convolution is commutative: \(x * h = h * x \)

- These block diagrams are equivalent:

 \[x \rightarrow h \rightarrow y \quad h \rightarrow x \rightarrow y \]

- Enables us to pick either \(h \) or \(x \) to flip and shift (or stack into a matrix) when convolving

- To prove, start with the convolution formula

 \[
 y[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m] = x[n] * h[n]
 \]

 and change variables to \(k = n - m \) \(\Rightarrow \) \(m = n - k \)

 \[
 y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n - k] = h[n] * x[n] \quad \checkmark
 \]
Cascade Connection of LTI Systems

- Impulse response of the **cascade** (aka series connection) of two LTI systems: \(y = H_1 H_2 x \)

![Diagram of cascade connection]

- Interpretation: The product of two Toeplitz/circulant matrices is a Toeplitz/circulant matrix

- Easy proof by picture; find impulse response the old school way

![Diagram of impulse response]

\(\delta \rightarrow h_1 \rightarrow h_1 \rightarrow h_2 \rightarrow h_1 \star h_2 \)
Parallel Connection of LTI Systems

- Impulse response of the **parallel connection** of two LTI systems $y = (H_1 + H_2)x$

- Proof is an easy application of the linearity of an LTI system
Example: Impulse Response of a Complicated Connection of LTI Systems

Compute the overall effective impulse response of the following system

\[
\begin{align*}
\text{Input: } x & \xrightarrow{h_1} h_2 \xrightarrow{h_3} h_6 \xrightarrow{h_6} \text{Output: } y \\
\text{Branch: } h_4 & \xrightarrow{h_4} h_5 \xrightarrow{h_5} h_6
\end{align*}
\]
Causal Systems

A system \(\mathcal{H} \) is causal if the output \(y[n] \) at time \(n \) depends only the input \(x[m] \) for times \(m \leq n \). In words, causal systems do not look into the future.

Fact: An LTI system is causal if its impulse response is causal: \(h[n] = 0 \) for \(n < 0 \)

\[
h[n] = \alpha^n u[n], \quad \alpha = 0.8
\]

To prove, note that the convolution

\[
y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]
\]

does not look into the future if \(h[n-m] = 0 \) when \(m > n \); equivalently, \(h[n'] = 0 \) when \(n' < 0 \).
Fact: An LTI system is causal if its impulse response is causal: $h[n] = 0$ for $n < 0$

$h[n] = \alpha^n u[n]$, $\alpha = 0.8$

Toeplitz system matrix is lower triangular
Duration of Convolution

The signal x has **support interval** $[N_1, N_2]$, $N_1 \leq N_2$, if $x[n] = 0$ for all $n < N_1$ and $n > N_2$. The **duration** D_x of x equals $N_2 - N_1 + 1$

Example: A signal with support interval $[-5, 5]$ and duration 11 samples

Fact: If x has duration D_x samples and h has duration D_h samples, then the convolution $y = x \ast h$ has duration at most $D_x + D_h - 1$ samples (proof by picture is simple)
An LTI system has a **finite impulse response** (FIR) if the duration of its impulse response h is finite.

Example: Moving average system

$$y[n] = \mathcal{H}\{x[n]\} = \frac{1}{2} (x[n] + x[n - 1])$$

$$h[n] = \frac{1}{2} (\delta[n] + \delta[n - 1])$$
An LTI system has an **infinite impulse response** (IIR) if the duration of its impulse response h is infinite.

Example: Recursive average system

$$y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n - 1]$$

$$h[n] = \alpha^n u[n], \quad \alpha = 0.8$$

Note: Obviously the FIR/IIR distinction applies only to infinite-length signals.
Implementing Infinite-Length Convolution with Circular Convolution

- Consider two infinite-length signals: x has duration D_x samples and h has duration D_h samples, $D_x, D_h < \infty$

- Recall that their infinite-length convolution $y = x * h$ has duration at most $D_x + D_h - 1$ samples

- Armed with this fact, we can implement infinite-length convolution using circular convolution
 1. Extract the D_x-sample support interval of x and zero pad so that the resulting signal x' is of length $D_x + D_h - 1$
 2. Perform the same operations on h to obtain h'
 3. Circularly convolve $x' \circledast h'$ to obtain y'

- **Fact:** The values of the signal y' will coincide with those of the infinite-length convolution $y = x * h$ within its support interval

- How does it work? The zero padding effectively converts circular shifts (finite-length signals) into regular shifts (infinite-length signals) (Easy to try out in Matlab!)
Convolution has very special and beautiful properties

Convolution is commutative

Convolutions (LTI systems) can be connected in cascade and parallel

An LTI system is causal if its impulse response is causal

LTI systems are either FIR or IIR

Can implement infinite-length convolution using circular convolution when the signals have finite duration (important later for “fast convolution” using the FFT)
Convolution Examples in Matlab
Convolution in Matlab

- You can build your intuition and solve real-world problems using Matlab’s convolution functions

- Matlab’s `conv` command implements **infinite-length convolution**

\[
y[n] = x[n] \ast h[n] = \sum_{m=-\infty}^{\infty} h[n - m] x[m]
\]

by implicitly infinitely zero-padding the signal vectors; signal lengths need not be the same

- Matlab’s `cconv` command implements length-\(N\) **circular convolution**

\[
y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n - m)_N] x[m]
\]
Stable Systems
With a stable system, a “well-behaved” input always produces a “well-behaved” output.

\[\text{“well-behaved” } x \rightarrow h \rightarrow \text{“well-behaved” } y \]

Stability is essential to ensuring the proper and safe operation of myriad systems:

- Steering systems
- Braking systems
- Robotic navigation
- Modern aircraft
- International Space Station
- Internet IP packet communication (TCP) …
Stable Systems (2)

- With a **stable** system, a “well-behaved” input always produces a “well-behaved” output

 "well-behaved" $x \rightarrow h \rightarrow "well-behaved" y$

- Example: Recall the recursive average system
 \[y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1] \]
 Consider a step function input \[x[n] = u[n] \]

![Graph of x[n] = u[n] for α = 1/2](image)

\[y[n], \text{ with } \alpha = \frac{1}{2} \]

![Graph of y[n] for α = 3/2](image)

\[y[n], \text{ with } \alpha = \frac{3}{2} \]
Well-Behaved Signals

- With a **stable** system, a “well-behaved” input always produces a “well-behaved” output

 \[
 \text{“well-behaved” } x \xrightarrow{h} \text{“well-behaved” } y
 \]

- How to measure how “well-behaved” a signal is? Different measures give different notions of stability

- One reasonable measure: A signal \(x \) is well behaved if it is **bounded** (recall that \(\sup \) is like \(\max \))

 \[
 \| x \|_{\infty} = \sup_{n} |x[n]| < \infty
 \]
Bounded-Input Bounded-Output (BIBO) Stability
An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y

![BIBO Stability Diagram](image)

DEFINITION

Bounded input and output means $\|x\|_{\infty} < \infty$ and $\|y\|_{\infty} < \infty$, or that there exist constants $A, C < \infty$ such that $|x[n]| < A$ and $|y[n]| < C$ for all n
An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y.

DEFINITION

Bounded input and output means $\|x\|_\infty < \infty$ and $\|y\|_\infty < \infty$.

Fact: An LTI system with impulse response h is BIBO stable if and only if

$$\|h\|_1 = \sum_{n=-\infty}^{\infty} |h[n]| < \infty$$
BIBO Stability – Sufficient Condition

- Prove that if $\|h\|_1 < \infty$ then the system is BIBO stable – for any input $\|x\|_\infty < \infty$ the output $\|y\|_\infty < \infty$

- Recall that $\|x\|_\infty < \infty$ means there exist a constant A such that $|x[n]| < A < \infty$ for all n

- Let $\|h\|_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$

- Compute a bound on $|y[n]|$ using the convolution of x and h and the bounds A and B

\[
|y[n]| = \left| \sum_{m=-\infty}^{\infty} h[n - m] x[m] \right| < \sum_{m=-\infty}^{\infty} |h[n - m]| |x[m]| < \sum_{m=-\infty}^{\infty} |h[n - m]| A = A \sum_{k=-\infty}^{\infty} |h[k]| = AB = C < \infty
\]

- Since $|y[n]| < C < \infty$ for all n, $\|y\|_\infty < \infty$ ✓
Prove that if $\|h\|_1 = \infty$ then the system is not BIBO stable – there exists an input $\|x\|_\infty < \infty$ such that the output $\|y\|_\infty = \infty$

- Assume that x and h are real-valued; the proof for complex-valued signals is nearly identical

Given an impulse response h with $\|h\|_1 = \infty$ (assume complex-valued), form the tricky special signal $x[n] = \text{sgn}(h[-n])$

- $x[n]$ is the \pm sign of the time-reversed impulse response $h[-n]$
- Note that x is bounded: $|x[n]| \leq 1$ for all n
We are proving that if $\|h\|_1 = \infty$ then the system is not BIBO stable – there exists an input $\|x\|_\infty < \infty$ such that the output $\|y\|_\infty = \infty$

Armed with the tricky special signal x, compute the output $y[n]$ at the time point $n = 0$

$$y[0] = \sum_{m=-\infty}^{\infty} h[0 - m] x[m] = \sum_{m=-\infty}^{\infty} h[-m] \text{sgn}(h[-m])$$

$$= \sum_{m=-\infty}^{\infty} |h[-m]| = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

So, even though x was bounded, y is not bounded; so system is not BIBO stable
Absolute summability of the impulse response \(h \) determines whether an LTI systems is BIBO stable or not.

Example: \(h[n] = \begin{cases} \frac{1}{n} & n \geq 1 \\ 0 & \text{otherwise} \end{cases} \)

\[\|h\|_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n} \right| = \infty \Rightarrow \text{not BIBO} \]

Example: \(h[n] = \begin{cases} \frac{1}{n^2} & n \geq 1 \\ 0 & \text{otherwise} \end{cases} \)

\[\|h\|_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| = \frac{\pi^2}{6} \Rightarrow \text{BIBO} \]

Example: \(h \) FIR \(\Rightarrow \) BIBO
BIBO System Examples (2)

- Example: Recall the recursive average system

\[y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1] \]

- Impulse response: \(h[n] = \alpha^n u[n] \)

- For \(|\alpha| < 1 \)

\[||h||_1 = \sum_{n=0}^{\infty} |\alpha|^n = \frac{1}{1-|\alpha|} < \infty \Rightarrow \text{BIBO} \]

- For \(|\alpha| > 1 \)

\[||h||_1 = \sum_{n=0}^{\infty} |\alpha|^n = \infty \Rightarrow \text{not BIBO} \]
Signal processing applications typically dictate that the system be **stable**, meaning that “well-behaved inputs” produce “well-behaved outputs”

Measure “well-behavedness” of a signal using the ∞-norm (bounded signal)

BIBO stability: bounded inputs always produce bounded outputs iff the impulse response h is such that $\|h\|_1 < \infty$

When a system is not BIBO stable, all hope is not lost; unstable systems can often be **stabilized** using **feedback** (more on this later).